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1 Introduction
The possibility of robotic assistants in homes is
swiftly turning into reality as robotics companies
are developing domestic robots.1 Much like human
assistants, these robotic systems offer an oppor-
tunity of continuous on-the-job learning – acquir-
ing new skills, adapting to unfamiliar tools, and
intuitively aligning with user preferences. We en-
vision that this learning process as highly interac-
tive and driven by natural language communication.
Through task-specific instructions, real-time feed-
back, and iterative correction, users guide robots in
mastering everyday tasks and refining their behav-
ior.

Recent advances in large language models
(LLMs) have demonstrated significant success
in enabling such capabilities. LLMs can de-
compose high-level commands into actionable se-
quences (Ahn et al., 2022; Huang et al., 2022;
Wang et al., 2023; Dalal et al., 2024; Shridhar et al.,
2020) and even generate executable programs that
map directly to robotic behaviors (Yang et al., 2024;
Kranti et al., 2024).

Existing studies that leverage LLMs as language
interpreters for robots have focused on ‘trajectory
from dialogue’ task (where the model constructs
a plan from provided human-human dialogue), or
synchronous interactions where the user provides
a command, the robot comes up with a plan of ac-
tions, executes it, and responds to the user (Shridhar
et al., 2020; Padmakumar et al., 2022; Sarch et al.,
2023; Zhang et al., 2022; Jiang et al., 2025). How-
ever, these paradigms assume a linear and discrete
interaction flow that may not reflect real-world dy-
namics. We envision users engaging with robots in
a more fluid and asynchronous manner by issuing
new commands while the robot is still executing

1https://www.1x.tech/neo, https://thehumanoid.
ai/

User Utterance Grounded Executable Actions
Let’s make cof-

fee
Find(Mug0);Pickup((Mug0);#
Place(Mug0,CoffeeMaker0)

This mug
would not fit,
use another one

Find(Mug1);Pickup(Mug1);#
Place(Mug1,CoffeeMaker0)

Make sure to
wash it first

Goto(Sink0);Place(Mug1,Sink0);
TurnOn(Faucet0);
TurnOff(Faucet0);#
Pickup(Mug1);
Place(Mug1,CoffeeMaker0)

Actually bring
me an apple in-
stead

Pickup(Apple0);Goto(User)

Table 1: Example of asynchronous user commands and
corresponding interpretation as Grounded Executable
Actions. # marks the timing of the next user utterance in
relation to the plan execution.

ongoing actions.
As illustrated in the example in Table 1, user ut-

terances can vary widely in granularity, contextual
dependence, and timing. They may be a high-level
context-free commands (e.g., “Let’s make coffee")
or context-dependent instructions that include re-
ferring expressions distinguishing between existing
and new object instances (e.g., “Use another one"),
modifications to the current plan (e.g., “Make sure
to wash it first"), or complete plan changes (e.g.,

“Actually bring me an apple instead"). Crucially,
these utterances can be issued during the execu-
tion of an ongoing action sequence, and their tim-
ing affects their interpretation. For instance, in
the human-human TEACh dataset, majority of the
commander instructions occur mid-execution inter-
rupting ongoing robot actions (Padmakumar et al.,
2022), highlighting the need for systems capable
of interpreting user input in the context of current
actions.

While full incrementality represents the ideal
paradigm for human-robot dialogue systems (Ken-
nington et al., 2025), a minimal yet essential capa-
bility for effective interaction is the ability to pro-
cess user commands issued during ongoing robot
actions. In such settings, interpreting these com-

252

Proceedings of the 29th Workshop on the Semantics and Pragmatics of Dialogue, September 3–5, 2025, Bielefeld, Germany.

https://www.1x.tech/neo
https://thehumanoid.ai/
https://thehumanoid.ai/


mands requires considering both the preceding di-
alogue context and the status of the current exe-
cution plan. In this paper, we describe a study
aiming to evaluate LLMs – now widely adopted
as general-purpose language processing tools – as
interpreters of natural language commands for a
robot assistant. The evaluation includes scenarios
where commands are issued asynchronously while
the robot is actively performing tasks.
2 Method

2.1 System
To collect realistic interaction examples, we de-
velop a multimodal text and video interface,
integrated with AI2THOR simulator, featuring
kitchens, living room, and bathroom environ-
ments (Kolve et al., 2017; Padmakumar et al.,
2022). Users interact with the virtual robot through
text-based chat, observing the environment and
robot actions through ego-centric view of the
robot’s camera. To support asynchronous inter-
action, the interface pauses before executing each
action in the plan, giving the user an option to in-
terject with new input. We use an LLM to convert
user’s natural language (NL) utterance, contextual
information—such as the current plan and previ-
ously referenced objects, into a sequence of exe-
cutable API calls for the robot actions (see Table 1).

The interface is designed to support two distinct
user roles: (1) a naive end-user who interacts with
the robot using natural language, and (2) an expert
user who provides natural language input along
with corrections of the interpretation when neces-
sary. To ensure that the experts are equipped to
accurately correct the system interpretations, they
are first required to complete five tasks by directing
the robot using grounded executable commands.

2.2 Experiment design
The objective of this study is to collect realistic
human–robot interaction data, including natural
language utterances issued while the robot is ac-
tively performing actions. Four expert users are
each instructed to complete tasks, including mak-
ing coffee, collecting objects, and cleaning dishes,
across ten distinct home environments by provid-
ing (1) step-by-step instructions and (2) high-level
directives. Users are encouraged to interrupt the
system whenever necessary to refine or redirect its
behavior.

Each NL input is interpreted by GPT-4.1, and the
resulting interpretation is displayed to the expert

user, who may choose to: (a) continue the interac-
tion using the automatic interpretation, (b) correct
the interpretation by expressing their intent as a
sequence of executable commands, or (c) issue a
new command, disregarding the previous utterance
and proceeding with the interaction.

2.3 Preliminary statistics

Table 2 shows the preliminary statistics from the
ongoing data collection. From the total of 267
expert user utterances collected so far, the interpre-
tation of 20.6% was manually corrected. 176 were
non-interrupting utterances, including the initial
utterances of a dialogue and those following a suc-
cessful execution of the previous plan. These were
manually corrected in 16% of cases. The remain-
ing 91 utterances interrupted the robot’s actions.
Among these, we distinguish between the utter-
ances following a robot failing to execute an action
(FAIL EXEC) and those following a successful
action execution (SUCCESS EXEC). Manual cor-
rections to the automatically generated plan were
applied in 12.5% of FAIL EXEC and 36.5% of
SUCCESS EXEC interrupting utterances.

Type # Utterances % Corrected
Total 267 20.6%
Initial/no interrupt 176 16%
After FAIL EXEC 38 12.5%
After SUCCESS EXEC 53 36.5%

Table 2: Statistics on the utterance types and the rate of
manual correction of interpretation by experts.

3 Summary and Future Work

In this work, we introduced a multimodal virtual
robot interface that enables users to interrupt the
system while it is executing actions. We proposed
a novel data collection methodology in which ex-
pert users serve as both participants and annotators,
streamlining the annotation process by embedding
it directly into the interaction.

Preliminary analysis reveals that while the over-
all misinterpretation rate by GPT-4.1 is 20%, in-
context interruptions are misinterpreted signifi-
cantly more often, at a rate of 36.5%. In future
work, we will leverage the complete dataset to con-
duct experiments aimed at improving interpreta-
tion accuracy, particularly for in-context utterances.
Planned directions include dynamic selection of
few-shot examples from the repository of expert an-
notations and the incorporation of chain-of-thought
reasoning into these examples.
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