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Abstract

We introduce FRAGA, a VR-based corpus of
direction giving dialogues following the model
of the SaGA corpus. The tracking data of
FRAGA are used to carry out multimodal com-
puting: we look at turn transitions and re-
evaluate findings from the literature on real-
world dialogues and compare them with avatar-
mediated VR dialogues. Interestingly, the es-
tablished temporal overlap patterns of turns
could not be replicated, and no significant
amount of partner-directed head orientation (ap-
proximating gaze) was observed around turn
transition points. However, the special status
of hesitations is evidenced by the co-occurring
head movements, but not by hand movements.
In addition, we apply pink noise distribution
fitting to the dialogue data, in particular to the
hand movements. Here we find that hand move-
ments indeed follow 1⁄f fluctuations, a property
of “meta-stable” dynamic systems.

1 Introduction

The interactive turn in cognitive science empha-
sizes face-to-face conversation (in the following
called interaction) as the nucleus of cognition and
communication (e.g., Spivey, 2023). At the same
time, due to virtual reality (VR) technology, even
face-to-face interactions can be technically medi-
ated (e.g., in educational settings; Bagci et al.,
2025). The question therefore arises as to what
the differences are between human–human and VR
augmented human–human dialogue? Interactions
already have a comparatively long history of re-
search in Conversation Analysis (Goodwin, 1981)
and formal dialogue theory (Ginzburg et al., 2020),
among others. In order to make empirical general-
izations, interaction studies require conversational
data. Data analyses are hampered by at least two
difficulties: interactions can be quite complex, and
interactions are usually multimodal (i.e., interlocu-
tors use the full range of body signals in addition

to speech), necessitating the integrated use of mul-
tiple analysis techniques (minimum for audio and
video data) (Gregori et al., 2023). An early example
of data analysis of a multimodal corpus focusing
on speech and manual gestures is the Speech and
Gesture Alignment Corpus (SaGA; Lücking et al.,
2013), which consists of human–human direction
dialogues. Accordingly, here we introduce an up-
dated VR version of SaGA, namely FRAGA (the
Frankfurt VR Gesture–Speech Alignment Corpus).
FRAGA is completely based on VR: the directions
are given by the participants as avatars in a virtual
environment, and speech, gaze and body behaviour
are captured by the means of the tracking devices of
the VR glasses—see section 3 for details. The raw
data is accessible for largely automated analysis;
we use it here to gain a better understanding of the
interplay of turn taking, mutual attention and hand
movements from a multimodal perspective. Our
research questions and directions are outlined in
section 2. In particular, we focus on a comparison
of VR with Real-World (RW) dialogues. To this
end, we replicate past studies and suggest a new
methodology for quantitative conversation analy-
sis, namely pink noise. FRAGA is introduced in
section 3. Results are presented in section 4 and
discussed in section 5.

2 Research Questions and Topics

Conversation Analysis is beginning to abandon its
old dogma that turns are primarily speech-based
units and is recognizing that transition-relevance
places are multimodal in nature (Duncan, 1974;
Rohlfing et al., 2020; Kendrick et al., 2023; Mon-
dada, 2007). Gaze takes on a central role: Kendon
(1967) found that the speaker did not look at the a
listener at the beginning of the utterance, but looked
at the addressee at the end of the utterance in about
70% of cases. However, gaze pattern differ across
different types of interaction (Degutyte and Astell,
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2021). Moreover, and in contrast to Kendon’s re-
sults, the averted gaze of a virtual avatar is not
interpreted as meaning that the avatar has not yet
finished speaking (Gambi et al., 2015).

As earlier VR glasses did not offer eye tracking,
the orientation of the head was often used as an
approximation. (Murray and Roberts, 2006). This
is of course not ideal (e.g., in high immersion con-
ditions gaze is better for teamwork experience in
collaborative games than head movement; Špakov
et al., 2019). However, head movement seems to
be sufficient for addressing and turn organisation
in avatar-based interactions (Kothe et al., 2025),
which is most relevant for the present study. Ac-
cordingly, for the time being we assume the approx-
imation of gaze via head orientation and hope to
be able to analyse gaze tracking data in the future
(cf. section 6). We look at gaze respectively head
orientation in avatar-mediated directions givings,
a setting that is characterized by asymmetric roles
(i.e., router and follower), and with task-oriented
structure. In particular, we assess gazing patterns
(i) at hesitation markers, (ii) at verbal turn transi-
tion points, and (iii) over the whole time course
of a directions dialogue. Accordingly, the first re-
search topic (T; we speak of research topic rather
than research questions because there are no pre-
cise expectations regarding VR interactions yet)
is

T1 Comparison of gaze/head orientation pattern
between VR and RW.

From a dynamic systems perspective on hu-
man interaction (Dale et al., 2013), the fluctua-
tion patterns of signals exchanged in dialogues
are often “meta-stable” (Mayo and Gordon, 2020;
Van Orden et al., 2011). Meta-stability is charac-
terized by “pink noise”, or 1⁄f distribution. Pink
noise is a property of time series in between white
noise and Brownian motion: white noise is com-
pletely random and future values cannot be pre-
dicted from past values, whereas Brownian motion
is predictable from preceding values (Delignieres
and Marmelat, 2012). 1⁄f fluctuation in data is char-
acterized by the fact that the amplitude is inversely
related to frequency. That is, fluctuation in data
approximates f−α , where α ≈ 1. This means that
pink noise, when transposed to a logarithmic axis,
is a straight line with a slope of −1. 1/f scaling
has been found, for instance, in the acoustic profile
of repeated pronunciations of words (Kello et al.,
2008). The study of Mayo and Gordon (2020)

found that pink noise characterizes the synchrony
of the gaze pattern of interlocutors. Less is known
about the fluctuation of hand and arm movements,
however. We hypothesize that it shows 1/f scaling,
too. We compare the fluctuation of hand move-
ments over the time course of a whole dialogue,
and within turn transition time windows.

T2 Does multimodal behaviour data follow a pink
noise pattern?

Moreover, speech–gesture production studies
found that gestures facilitate word elicitation
(Krauss and Hadar, 1999). Speech dysfluencies and
hesitations in turn indicate that utterance produc-
tion is faltering for some reason. Putting both ob-
servations together, we expect that increased hand
movement occurs at the same time as or shortly af-
ter the dysfluency (indicated by transcription labels
“[UH]” and “[UM]”).

T3 Associations of verbal production difficulties
and non-verbal behaviour.

Detailed studies in conversation analysis exam-
ined the temporal pattern observed in the verbal
parts of turns, i.e. how quickly turn transitions oc-
cur in speech. A stable result is that the average
time between turns is around 200ms (Levinson and
Torreira, 2015). Considering that utterance produc-
tion and comprehension take a certain amount of
time, this result can be understood as the fastest
psycholinguistic threshold, modulo speech pauses,
interruptions and predictive processing (Levinson,
2024). However, the results of previous studies
were mainly gained in RW settings. Accordingly,
the question arises whether they generalize to VR
settings.

T4 Comparison of timing and turn-tranisition be-
tween VR and RW.

To address these research topics in a data-based
way, appropriate VR data is needed. FRAGA col-
lects such data in an avatar-mediated, VR-based
setting resting on direction-giving dialogues.

3 Experimental Setting

In the FRAGA-experiments, two participants are
engaged in a route description-giving task. One—
called Router in the following—was sent on a vir-
tual bus ride through a virtual town (fig. 1), which
lasted approximately 7 minutes. Afterward, they
met the other participant—called Follower—in a
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“living room” and described the route through the
virtual town. The route descriptions involve giv-
ing directions and describing salient buildings or
features of the landscape—so-called landmarks—,
as studied in the psychology of route descriptions
(Denis, 1997) (see also fig. 1). Accordingly, the
paradigm is well-known for eliciting gestures (cf.
the original SaGA corpus; Lücking et al., 2010).
After the directions dialogue, the Follower has to
find the way through the virtual town (in contrast
to SaGA, where this step was skipped). After the
experiment, additional data was collected using a
small questionnaire, such as demographic data, pri-
mary languages, dominant hand, acquaintance with
the interlocutor, and previous experiences with VR.

The entire experimental setup was implemented
using VA.SI.LI-LAB (VR-Lab for Simulation-
based Learning; Mehler et al., 2023), a VR plat-
form that supports immersive simulation-based
learning by using a graph-theoretic model that man-
ages multimodal data and facilitates dynamic event
processing in adaptive virtual environments (see
(Abrami et al., 2023) for a comparison of VA.SI.-
LI-LAB with related approaches). As a multi-user
collaborative tool, VA.SI.LI-LAB enables detailed
exploration of virtual spaces through features such
as multi-user annotation (Bagci et al., 2025) and
real-time environment modification (Abrami et al.,
2024). The participants are represented by Meta
Avatars1 that reflects the tracked hand, face and
eye data, thus enabling multimodal interactions in
VR. The glasses we used were the Meta Quest Pro,
which not only cover the hands, but also the lower
and upper face and eyes. VA.SI.LI-LAB tracks all
data locally on the glasses and then sends it to our
database. Both the local timestamps of the glasses
and the timestamps when they reach the server are
stored to enable the most accurate tracking possi-
ble. A third-person view on an avatar-mediated
directions dialogue is shown in fig. 2.

In the case of FRAGA, we experiment with an
instantiation of VA.SI.LI-LAB which includes the
virtual landscape of FRAGA alongside a virtual
meeting room in which the probands can interact
with each other. Both participants meet in the vir-
tual meeting room, and the Router explains the way
through the city to the Follower.

1https://developers.meta.com/horizon/
documentation/unity/meta-avatars-overview/

4 Data-based Analysis

In the following, the research questions (see sec-
tion 2) are addressed. We look first at verbal turn
overlap. We then analyze gaze approximated by
head orientation. Finally, pink noise fluctuation is
addressed.

All audio recordings from the experiment were
transcribed using CrisperWhisper (Zusag et al.,
2024), a variant of OpenAI’s Whisper (Radford
et al., 2023), which provides more precise word-
level timestamps and preserves disfluencies rather
than omitting them. Since each participant was
recorded using an individual headset equipped with
its own microphone, no additional speaker diariza-
tion was required. 73 dialogues involving 146
speakers (73 Router and 73 Follower) have been
analyzed so far.2 Demographic information about
the participants is collected in table 1. The speak-
ing times and number of word tokens of the 73
dialogues of FRAGA are summarized in table 2.

Age
<18 2
18–20 23
21–23 72
24–26 26
27–29 13
≥ 30 10

Gender
Female 39
Male 102
Diverse 1
No response 4

Dominant Hand
Right 133
Left 12
Not applicable 1
VR Experience (1 = low . . . 5 = high)
1 86
2 42
3 11
4 6
5 1
Acquaintance (1 = low . . . 5 = high)

1 43
2 10
3 3
4 3
5 87

Table 1: Demographic characteristics of participants

2There are actually more recorded dialogues. However,
due to recording problems – especially WLAN interruptions
that lead to a loss of synchronization –, they have to be cor-
rected manually, which is still being worked on.
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(a) Panorama view of FRAGA (b) Route and landmarks in bird’s eye view (taken from Lück-
ing et al. 2010)

Figure 1: Experimental stimulus: Virtual town

Figure 2: Directions dialog between two participants as
avatars, third-person perspective

Speaking time # Tokens
total: 12:44:37 92,923

Router: 8:17:19 70,517

Follower: 4:27:18 22,406

Avg. Router: 0:06:49 1,273

Avg. Follower: 0:03:40 966

Avg. Dialogue: 0:10:28 307

Table 2: Speaking times (hours:minutes:seconds) and
number of tokens

4.1 Turn overlap (T4)

We calculated the temporal relation between ad-
jacent utterances of different speakers. For that
we take the transcribed audio from all participants,
add time ranges for each utterance and combine
transcriptions from Person 1 and 2 into a dialogue
format, ordered by starting time of their utterances.
All dialogue files are then processed, iterating over
each utterance and checking if a switch from Per-
son 1 to Person 2 or vice versa occurred. If so, the
end time of the previous utterance is compared to
the starting time of the following and the difference
is saved if it falls within a window of −2500 to
2500 milliseconds. The 200.00ms turn break time
can not be confirmed – see fig. 3. Surprisingly, we
found that overlap is the rule. An average over-

Figure 3: Time gap between adjacent utterances of dif-
ferent speakers.

lap of −214.90ms is observed, with a minimum
value of −2,498.00ms and a maximum value of
2,491.00ms within the chosen window. This re-
sult is certainly due to the VR environment and the
audio transmission.

Does the pattern emerge regardless of the sen-
tence types at turn transition? To answer this
question, we have divided utterances in question–
answer pairs (i.e., pairs of utterances where speaker
1’s utterance ends with a question mark and
the following utterance of speaker 2 ends with
a period), and others. Here an average value
of −234.90ms was observed, with a minimum
value of −2,493.00ms and a maximum value of
2,259.00ms The results are shown in fig. 4, and
confirm overlap as a rule, but with more variance.

4.2 Hesitations (T3)

If the production of at least some gestures is bound
up with difficulties in word elicitation (cf. sec-
tion 2), then we expect to find increased hand move-
ment around verbal hesitation markers. Hesitations
are tagged as “[UH] or [UM]” tokens and are part
of the CripserWhisper transcription. We assessed
the amount of movement within a time window of
1 second before and following these tokens. We
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Figure 4: Time gap difference between syntactically
determined question–answer pairs and other pairs of
utterance

compared it to (i) the average amount of movement
over the span of the whole dialogue, and (ii) the
close temporal context. The amount of movemvent
was assessed in terms of distances, where distances
were computed for each subject by first calculating
the Euclidean length of the frame-to-frame differ-
ence in three-dimensional hand coordinates. These
individual step lengths were then summed to obtain
the total distance traveled within each segment, and
the corresponding number of steps was recorded.
The mean step length for a given segment was de-
fined as the total distance divided by the number
of steps. Finally, the aggregated mean-step value
across all subjects is calculated. Figure 5 shows
the mean step distance (hand movement) per frame
(± standard error of mean, SEM) for both left and
right hands during the three token-aligned phases
“Before,” (i.e., start of hesitation token until minus
1 sec.) “During,” (duration of token) and “After”
(end of token until plus 1 sec.). Each bar shows the
average distance per frame (±SEM) in that phase
of the corresponding phase, while the two dashed
horizontal lines mark the mean frame distance for
each hand during the “During” phase of the dia-
logue timestamps (the reference baselines, nearly
identical for both hands). Within every phase, left
and right hands (see table 3) did not differ signifi-
cantly (paired t-tests all non-significant), indicating
that both hands moved to a similar extent around
hesitation markers (p-value: Before: 0.78, During:
0.72, After: 0.30). Comparing “Before” and “Af-
ter” also revealed no significant change for either
hand (p-value: Left hand: 0.21, Right hand: 0.23).
Finally, none of the three token-aligned phases dif-
fered significantly from the dialogue-based refer-
ence lines (p-values between 0.17 and 0.80), in-
dicating that hand motion around tokens neither
exceeds nor falls below the dialogue baseline. For
the individual statistical charateristics see table 4.

Phase Left Hand Right Hand
Before 0.063748 0.063482

During 0.042608 0.042137

After 0.025926 0.027156

Table 3: Means for Token Bars

Test Paired t-Tests

N 146

df (degrees of
freedom)

145

Left vs Right
Before t(145) = 0.28 p = 0.78

During t(145) = 0.36 p = 0.72

After t(145) =−1.04 p = 0.30

Before vs After
Left Hand t(145) = 1.26 p = 0.21

Right Hand t(145) = 1.21 p = 0.23

Dialogue During Refline vs Token Phases
Left, before t(145) =−1.29 p = 0.20

Left, during t(145) =−1.37 p = 0.17

Left, after t(145) =−0.25 p = 0.80

Right, before t(145) =−1.24 p = 0.22

Right, during t(145) =−1.24 p = 0.22

Right, after t(145) =−0.27 p = 0.79

Table 4: Statistical test results on hand movement
(paired t-tests, N = 146, df=145)

Additionally, we looked at the amount of partner-
directed gaze at hesitations. Gaze direction was ap-
proximated by head orientation. We found that
partner-directed head orientation is likely to be
avoided when production difficulties arise—see the
comparison in fig. 6. Moreover, no difference in
the amount of partner-directed gaze for different
types of speech acts is found (when assigning all
turns to either assertion or question).

Is there a difference in the amount of partner-
directed gaze at turn taking intervals compared
to mid-turn gaze? To answer this question, we
compared head orientation at the ±500.00ms time
interval at the beginning and the end of an utter-
ance (“Sentence Start” and “Sentence End”, respec-
tively) with head orientation during the time course
of the utterance (“Sentence Mid”), see fig. 7. While
a difference in head orientation patterns at turn-
sensitive points is to be expected (see section 2),
no significant difference in head orientations could
be found.
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Figure 5: Average hand movement per frame for the left
and right hand in the “Before”, “During” and “After”
phases of hesitation markers. The bars show the average
distance per frame (±SEM), and the two overlapping
dashed lines show the average distance of each hand
during the “During” phase of the dialog timestamps.

Figure 6: Average amount of time speaker looks at
conversation partner during assertions, questions and
hesitations. Bars represent weighted average, while
horizontal lines indicate unweighted average.

4.3 Pink noise (T2)

Pink noise fluctuation has been observed in various
data sources. Here we assess whether it also de-
scribes movement, where movement is hand move-
ment tracked at wrist position. The most frequently
used method for detecting 1⁄f scalings is Detrended
Fluctuation Analysis (DFA; Peng et al., 1994). DFA
returns a value for exponent α that characterizes
pink noise when it ranges from 0.75 to 1.25 (Delig-
nieres and Marmelat, 2012, p. 4). We carried out
DFA by means of Python’s nolds library (Schölzel,
2019).

However, due to gaps or insufficient length in the
timestamp data, which are essential for DFA, the
following analysis includes only 59 participants. In
our pipeline, each individual timestamp is treated
as a separate analysis unit. We make use of two

Figure 7: Average amount of time speaker looks at
conversation partner during start, mid and end part of
his sentence. Bars represent weighted average, while
horizontal lines indicate unweighted average.

different timestamps: (i) the time intervals defined
by the utterances of a dialog (called Dialog Times-
tamps in the following), (ii) the time intervals taken
only from hesitation marker tokens (Hesitation
Timestamps). For a given timestamp, we first ex-
tract the segment of hand-tracking data correspond-
ing to that timestamp. The three-dimensional posi-
tional coordinates (x,y,z) within that segment are
converted into a one-dimensional series of frame-
to-frame step lengths (the Euclidean distance be-
tween consecutive 3D points). DFA is then ap-
plied to this step-length series to compute the α-
coefficient for that specific timestamp. By repeat-
ing this process for all timestamps associated with
a given participant and a given hand (left or right),
we obtain a list of α-values (one per timestamp)
for each participant-hand combination—see fig. 8.
We then compute the mean α across all valid times-
tamps for each participant–hand combination. Fi-
nally, to characterize group-level behavior, we ag-
gregate these per-participant means across the en-
tire sample: the mean (αµ ) and the median (α) are
computed separately for left and right hands across
all participants. In other words, each timestamp
contributes one α-estimate per hand; these are av-
eraged within participants to yield a single α per
participant per hand; and those participant-level
α’s are in turn summarized by their overall mean
and median, which are shown in table 5.

4.4 Head orientation as gaze approximation
(T1)

As can be observed from fig. 6 and fig. 7, the head
of one interlocutor is oriented towards the dialogue
partner in only about one third of the time. Where
do interlocutors look at the remaining time? To
answer this question, we plotted the projections of
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Figure 8: Pink noise hand movement, dialogue timestamps; x-axis labels show the index of the participants

Hand Left Right
Dialog Timestamps

Mean 0.856 0.865
Median 0.848 0.859

Hesitation Timestamps
Mean 0.938 0.945
Median 0.888 0.979

Table 5: Pink Noise: Averaged alpha coefficients for di-
alogue timestamps and hesitation timestamps (see main
text for explanation)

head orientations of each individual interlocutor on
a sphere surrounding the interlocutors. Two exam-
ples are shown in 9. These graphics are slightly
less accurate than our calculations for the percent-
age values, since we need to assume a fixed head
and body position for both persons during the en-

tire conversation. Fixed positions are obtained by
calculating the median value from all tracked posi-
tion coordinate points for the respective part. Once
fixed values are obtained, we calculate the view
rays from the fixed head position and place the
rectangle for body simulation onto the fixed body
position point. Intersections with the rectangle are
marked as red dots inside the rectangle while all
view rays, regardless of intersecting with the rectan-
gle, are intersected with the sphere. The sphere has
the fixed head position as center and its radius is
set to fully include the rectangle inside the sphere.
The intersection points are again marked onto the
sphere, containing a heatmap color scheme, show-
ing the density of frequently viewed areas. Lastly
an average view ray is calculated from all received
head rotations and drawn originating from head
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position and with the length of the sphere’s radius.
The resulting projections show a high density area
for interlocutors’ view directions at approximately
head level of their partner, with point distributions
around that area. Very few points are measured
where view directions go in completely different
directions. This would speak for a higher percent-
age value of on-looking time, but we observe var-
ious plots with slight shifts of these cluster to the
right left or above of the other interlocutor. Such
variations would explain the the lower percentage
values and could stem from only using the head
rotation value to calculate view directions instead
of integrating the eye tracking data. The further
integration of eye-tracking data and the fine-tuning
of the calculation method for gaze direction should
lead to more detailed results with possibly longer
on-looking times and is the subject of current work.

Brief summary:
T1 Participants look at each other about 1⁄3 of

the time. There is no difference of partner-
orientation for turn transitions, but there is for
hesitations.

T2 Hand movements exhibit 1⁄f fluctuations.
T3 Hesitation is associated with fewer partner-

directed head movements, but has no effect
on hand movements.

T4 An average turn overlap of −214.90ms is ob-
served.

5 Discussion

The analyses reported in section 4 show a couple of
differences of VR-mediated FRAGA dialogues and
what we would expect from RW dialogues. Why is
that?

Perhaps the most surprising result is that, on aver-
age, overlap in speech is the rule for turn transitions,
not the exception. This observation is probably due
to the asymmetry of the type of dialogue (direction
givings). One participant, the Router, is the main
speaker, because s/he gives the follower directions
(cf. the proportions of speaking times and number
of tokens in table 2). This means that the Follower
in general has to interrupt the Router if s/he wants
to take the turn, for instance, for requesting more
information. Interruptions are naturally accompa-
nied by an overlap of speeches (which is part of the
nature of interrupting).

The finding that partner-directed gaze is avoided
during hesitations can most likely be explained

by findings on cognitive processing load and gaze
aversion. Monitoring faces is an informationally
rich, costly process (Doherty-Sneddon et al., 2001).
This means that face monitoring through gaze ties
up cognitive resources which are needed for word
elicitation, especially when production difficulties
occur. Therefore, averting the gaze is a strategy of
avoiding cognitive overload (Glenberg et al., 1998).

Until now, gaze is approximated by head ori-
entation, which is a simplification. However, the
results so far seem to indicate that the gaze behav-
ior between VR and RW is actually quite differ-
ent. On the one hand, in VR no difference in head
orientation across turns, turn transitions and con-
versational act types has been found. On the other
hand, there are dialogue instances where nearly
no head-approximated gaze is directed to the in-
terlocutor. Both results deviate from the previous
findings on RW (see section 2). Accordingly, there
seems to be a rather different perception of the VR
interaction situation compared to RW. We can only
speculate about the reasons. It is conceivable that
participants do not take avatar gaze as trustworthy
as human gaze. As a consequence, partner moni-
toring is taken less seriously, in the extreme nearly
fully avoided. It is also possible that the results
are slightly biased by the precision of the tracking
method and its visualization in avatars. That is,
the eye direction displayed in the avatar might be
slightly distorted. Given the very subtle system of
gaze and mutual gaze, even small deviations can
irritate VR users and affect head and eye move-
ments.

Hand movement data are shown to follow 1⁄f fluc-
tuations. The fitting is nearly perfect when data are
aggregated on the temporal windows defined by
sentence tokens. It is still not well-understood what
causes pink noise distributions (Delignieres and
Marmelat, 2012; Van Orden et al., 2011). However,
1⁄f scalings indicate a property of a non-random,
complex systems. It characterizes, for instance,
many kinds of physiological data (Sejdić and Lip-
sitz, 2013). Now hand-movements, including hand
and arm gestures, are bodily actions, too. There-
fore, some degree of “pinkiness” can be expected
from this anatomical fact. In addition, hand move-
ments that are part of gestures are subject to seman-
tic constraints. For instance, a gesture occurrence
usually “coheres” with an expression from speech,
the affiliate (Schegloff, 1984), which mostly is a
lexical item (Mehler and Lücking, 2012). A gesture
and its affiliate normally exhibit a tight temporal
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(a) “Good” example: interlocutor is main focus (b) “Bad” example: main focus is slightly ahead of interlocu-
tor

Figure 9: Three dimensional representation of tracked eye data during the entire conversation. Tracking points are
projected onto a sphere around the average head position of the speaker, while the body of the conversation partner
is represented as a two dimensional rectangle at his average body position.

relationship (McNeill, 1992). That is, affiliation
imposes additional systematicity in movement data,
which is probably captured by the token-based ag-
gregation of the DFA and which could explain why
the scaling coefficient is very close to 1.

The vast majority of the participants had little
or no VR experience, cf. table 1. Accordingly, it
cannot be ruled out that a certain degree of devia-
tion from the RW results is simply due to the fact
that the participants behaved hesitantly and had
to adapt to the VR environment. We will be able
to say more about this when the experiments are
repeated with new participants, who are generally
becoming more and more familiar with VR in their
daily lives or as part of their studies.

On a more abstract level, FRAGA shows the
usefulness of VR-based approches for multimodal
computing. Here, we exemplified this by means
of speech-to-text transcriptions (with token times,
speaker diarization, and hesitation detection), hand
movement data, and head orientations. Such anal-
yses will improve with the tools and methods that
are available for multimodality research (Henlein
et al., 2024). However, FRAGA also shows that
dialogs in the real world differ in important as-
pects from avatar-mediated VR dialogs. Therefore,
the methodology of VR and the insights gained
from it cannot simply be transferred to RW. Rather,
FRAGA can be seen to address a field of commu-
nication research sui generis, namely avatar-based
communication (e.g., Wei et al., 2024). Given the
need for social immersive remote communication

(roughly, from letters to phone and video calls to
avatars), it is necessary to investigate and under-
stand the characteristics of VR interactions and
how they compare to RW interactions.

6 Outlook

We introduced FRAGA and first multimodal anal-
yses using this resource. FRAGA is a dataset on
human–human interaction in VR environments us-
ing VR glasses. A feature of the VR–based ap-
proach is the integrated tracking of different sig-
nals. Developing and using more automatized pro-
cessing methods (e.g., gesture recognition, facial
expression recognition, eye gaze tracking data and
mutual gaze detection) is ongoing work. In this
context, an anonymized version of FRAGA is in
preparation and will be released to the public.
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