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Abstract

We explore how neural network-based agents
learn to map continuous sensory input to dis-
crete linguistic symbols through interactive lan-
guage games. One agent describes objects in
3D scenes using invented vocabulary; the other
interprets references based on attributes. We
extend the CLEVR dataset with more complex
scenes to study how increased referential com-
plexity impacts language acquisition and sym-
bol grounding in artificial agents.

1 Introduction

We investigate a core challenge in artificial intel-
ligence and cognitive science: how systems can
bridge the gap between continuous sensory input
(like vision) and discrete symbolic communica-
tion (like language) known as the symbol ground-
ing problem (Harnad, 1990). It refers to the diffi-
culty of connecting abstract symbols to real-world
referents in a meaningful way, especially in artifi-
cial systems where symbols must acquire meaning
through interaction rather than pre-programmed as-
sociations. We study symbol grounding through
generation and interpretation of referring ex-
pressions which require a system to map visual
attributes (like color, shape, and size) to symbolic
representations that can be communicated and un-
derstood by another agent. We explore how neu-
ral agents can develop such referential abilities
through language games—interactive scenarios
where communication protocols emerge from re-
peated coordination attempts in interaction—by
exchanging discrete messages toi solve a visual
diuscrimiantion task.

In this setup one can study the proprties of ar-
tifical languages the agents develop and whether
these resemble human languages (Bartlett and
Kazakov, 2005; Kirby et al., 2008; Steels and Loet-
zsch, 2009; Kharitonov et al., 2019; Lazaridou
et al., 2017). However, our focus here is inves-
tigation of conditions and protocols that lead

learning successful interaction. These include
different configurations and complexities of dis-
criminating features between the target object and
distractors and between different scenes as well dif-
ferent configurations of grounded langauge models.
This gives us important insights what neural mod-
els like these are capable of learning in inetractive
scenarios with natural, human language.

2 Dataset

Our dataset conists of images of contrasting scenes
and objects. The scenes are generated from an
adapted code that was used to generate the CLEVR
dataset. Instead of focusing on compositional
properties of descriptions, we generate scenes with
increasing complexity and control over object at-
tributes, inspired by (Dale and Reiter, 1995), but
we used the feature hirerachy to generate visual
scenes rather than generate descriptions. We create
the following datasets:

In CLEVR color, the target object is uniquely
identifiable by color alone. All distractors share
the same shape and size as the target. This allows
the study of how agents learn to use a single at-
tribute for reference. Dale-2 includes one target
and one distractor. The target is uniquely identifi-
able by a minimal combination of attributes (color,
shape, size). This setup introduces more variabil-
ity and requires agents to learn which attributes
are most informative in each context. Dale-S in-
creases complexity by including one target and
four distractors. The target may share multiple
attributes with different distractors, requiring more
complex referring expressions. This setup closely
mirrors real-world scenarios where objects often
share overlapping features. Each dataset contains
10,000 images, with up to 10 non-overlapping ob-
jects per image. The images are 480 x 320 pixels,
and objects are placed to ensure visibility and spa-
tial separation.
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Figure 1: Learning curves of all language games on each dataset. The colors correspond to different vocabulary

sizes |V|. The baseline is marked in black.

Images are processed using a ResNet-101 model,
followed by two convolutional layers with ReLLU
activations. These layers reduce the feature maps
to 128 channels.

3 Experiments

The games are set up through the EGG frame-
work (Kharitonov et al., 2019) that allows commu-
nication through a discrete channel with an LSTM.
Backpropagation is enabled through Gumbel-
Softmax relaxation.

The receiver’s task is to predict a 3 X 3 region
around the target object in a 14 x 14 grid over
the image (see Appendix A). The model outputs
a probability distribution over all regions, and per-
formance is measured by the probability mass
assigned to the correct region. The sender encodes
bounding boxes of all objects and passes them
through an LSTM to generate a message. The re-
ceiver decodes the message and combines it with its
own visual representation of the scene to predict the
target region. The receiver does not have enough
information to solve the task on its own. A total
of 128.000 games are played. Furthermore, we
allow different message lengths vocabulary sizes.
All results are compared to a baseline in which the
sender is generating random messages.

On the ’Dale-2’ dataset, almost all con-
figurations outperform the baseline, with top-
configurations achieving over 96% probability
mass (see Appendix B). Message length primarily
influences performance, with n € {3, 4} yielding
consistent results. While n = 6 configurations
can succeed, they are less reliable. Vocabulary
size shows less impact, though |V'| = 2 performs
slightly worse. No clear correlation between n
and |V | emerges. On the *Dale-5 dataset, only 8
out of 30 configurations beat the baseline. Best

models reach 84%, but many struggle due to the in-
creased complexity. Shorter messages (n € {2,3})
and medium vocabularies (|V| € {10, 16, 50}) are
most effective. The increased number of distrac-
tors complicates the task: objects share more at-
tributes, requiring more complex descriptions, and
their spatial proximity can lead to confusion in re-
gion identification. Performance is weakest on the
"CLEVR color’ dataset, with only two configura-
tions beating the baseline (64-67%), both using
medium message lengths (n € {3,4}) and vocab-
ularies (|V| € {10, 16}). Notably, short messages
(n = 2) often mislead the receiver. The presence
of up to 10 objects increases the likelihood of fo-
cusing on incorrect targets.

4 Findings and future directions

Our study shows (i) that emergent communica-
tion is possible and in the studied environments
and network configurations but (ii) scene complex-
ity significantly affects learning. More distractors
and overlapping attributes make it harder for agents
to learn effective communication. (iii) Medium-
sized vocabularies and message lengths strike the
best balance between expressiveness and learnabil-
ity. (iv) Attribute difficulty: shape is easiest to
learn, followed by color, with size being the hardest.
This mirrors findings in human cognition and sug-
gests that (v) neural networks may benefit from
similar inductive biases. The findings suggest
that that successful language-vision models must
go beyond mere observation of pixels and words
where such biases would be provided. They must
incorporate structured representations, attention
mechanisms, and pragmatic reasoning to handle
real-world complexity.
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A Architecture of the language game
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Figure 2: Simplified architecture of the attention predic-
tor game.

B Results

| Dale-2  Dale-5 color
n |V| | P mass

baseline | 62,16%

P mass | P mass
49.61% ‘ 41,68%

2 2 92,27% | 52,15% | 33,64%
3 2 94,52% | 51.97% | 37,09%
4 2 89,15% | 51.98% | 39,68%
6 2 59,68% | 53,57% | 38,43%
2 10 | 96,16% | 80,26% | 36,53%
310 94,9% | 53,47% | 38,24%
2 16 | 95.84% | 84,03% | 39,65%
4 10 | 96,08% | 48,03% | 64,31%
316 | 9459% | 81,46% | 67,88%
6 10 | 63.46% | 82,12% | 40,11%
4 16 | 94,14% | 49.81% | 40,84%
6 16 | 9586% | 50,71% | 40,61%
2 50 | 93,78% | 52,24% | 39,56%
3 50 | 9388% | 79,65% | 40,36%
2 100 | 9243% | 53.23% | 37,68%
4 50 | 96,24% | 48,79% | 43.,61%
3 100 | 9525% | 48,52% | 42,55%
6 50 | 91,27% | 52,55% | 40,21%
4 100 | 95,55% | 49,65% | 42.,85%
6 100 | 60.27% | 46,92% | 41,98%

Table 1: Probability masses of the attention reference
resolver after 128.000 games: n are different maximum
message lengths and |V are different vocabulary sizes.
Results in red didn’t pass the baseline. The results are
sorted by the product of n and |V'| which corresponds
to available space for the message. The best results are
achieved with a medium-sized message space across all
datasets.
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