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Abstract

A version of Brennan and Clark’s conceptual
pact model can be applied to referring expres-
sions with some success to the Pentomino puz-
zle building domain where an instructor gives
instructions to build puzzles from a simple set
of 12 puzzle pieces. We discuss how such a
model could be scaled up to a much more com-
plex domain in the game of Minecraft, outlin-
ing the key differences between the two do-
mains and a plan for scaling up the models
with language models.

1 Introduction

Following work in embodied reference resolution
(Kennington and Schlangen, 2015; Yu et al., 2016;
Suglia et al., 2022), conversational grounding (Poe-
sio and Rieser, 2011; Ginzburg, 2012) and lan-
guage acquisition in the spirit of Steels and Vogt
(1997), we explore how a computational model of
Brennan and Clark (1996)’s psycholinguistic the-
ory of conceptual pacts in dialogue has had some
success in a simple reference domain, and how the
challenge of a more complex domain could be met.

2 Modelling Conceptual Pact Building in
Dialogue with Language Models

We follow the description of conceptual pacts using
language models described by Hough et al. (2024).
We capture two ways conceptual pacts can work
in conversation: Firstly, different dialogue pairs
can develop different pacts for naming different
objects which have quite different lexical content,
but remain consistent throughout their interaction.
Secondly, the convention of naming a object can
stabilize over time in the interaction.

To capture the contribution of local conceptual
pacts, we use local updating language models for
each object 7, p£*“, e.g. in a Pentomino puzzle do-
main, for the X piece p’ " (wy..w,) gives the prob-
ability value that a referring expression wy..w,, will

be used for X based on the previous references to
the piece seen so far. For our simulated interactive
learning element, we make the simplifying assump-
tion that after trying to resolve wy..w,,, our agent
receives a signal of the correct piece then adds
wo..wy, to the training data for the relevant p2*“*
model. We allow the possibility of incorporating
prior experience from observing other interactions,
with language models p&* (wq..wy,). The experi-
ence models return the probability of the words
being generated to refer to piece r based on prior
conversations they have observed and do not update
during the current interaction, much like standard
static machine learning models. We assume that
an effective model will make use of both sources
of knowledge, optimally using the locally built lan-
guage model in combination with the experience
model with some weight )\ in reference resolution,
for example in a simple Bayesian model as in (1).

arg IIl;lXpim(wo..wn) + Ap2 (wo.wn) - p(r) (1)
Results on the Pento-CV corpus Hough et al.
(2024) show that in a simple reference resolution
system trained and tested on the PentoRef Pento-
CV corpus (ZarrieB et al., 2016), using the prob-
abilities from these combined pact models as fea-
tures improved accuracy compared to an equivalent
static system. As can be seen in Figure 1, some
pieces, like the red X piece (left graph) have very
distinct separation in their models’ probabilities
being applied to their references compared to those
of the other pieces, while some, like the N piece
(right graph) take longer to separate out from some
competitor piece models. When trained on 7 di-
alogues and using the updating LM probabilities
in its feature set during the 8th test dialogue, there
was significant improvement (88% vs. 83% accu-
racy) and when limiting training to just a single
prior dialogue the dynamic system is substantially
better than the static one (81% vs 59%).
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Figure 1: Plots of the moving average of the per-word cross-entropy (per-word negative log probability) of 10
different Pentomino pieces being referred by one conversational pair according to the model for that piece (solid
line with solid circular markers), vs that assigned by models for other pieces (dashed lines).

PENTO-CV

MDC-R

8 dialogues (8 different pairs - switching roles)

101 dialogues (49 different pairs in fixed roles)

11,000 words per session (mean)

300 words per session (mean)

1,899 referring expressions (only pieces)

7,600 referring expressions (exhaustive)

Reference chain length for pieces: median=19

Reference chain length for block sets: median=2

Table 1: Comparison of size and format of datasets.

3 Minecraft Dialogue Corpus with
Reference and comparison to Pento-CV

The Minecraft Dialogue Corpus with Reference
(MDC-R) corpus (Madge et al., 2025) annotates the
original MDC with reference annotations, as part
of the ARCIDUCA project (Poesio et al., 2022).!
The MDC-R uses a 11x9x11 Cartesian coordinate
based Minecraft world, with blocks of 6 differ-
ent colours (maximum 20 blocks of each colour).
Much like Pento-CV, the Architect instructs the
Builder to lay blocks into positions, though into a
virtual 3D grid world. There are several differences
to Pento-CV which we will briefly layout here.

Number of possible referents While in Pento-
CV the number of individual piece referents was
only 12, and in theory 2! possible subsets of
pieces, in MDC-R, the number is far higher: while
there are a maximum of 120 coloured blocks that
could be used in the game (and 2'?° possible sub-
sets thereof), Architects also refer to blank spaces,
so the referent set could be one of 1089 places (or
an enormous 21989 subsets thereof).

Dialogue length and pact length The potential
pact length for objects in the two corpora is as
shown in Table 1. While the MDC-R has many
more references annotated, the length of reference
chains is significantly shorter (median=2) as blocks
are introduced and used within a single game.

"https://www.arciduca.org/

Reference annotations and types While in
PENTO-CV referring expression annotations are
only made for pieces present in the building area,
MDC-R has all references annotated, not only for
the blocks present, but for all referents to whole
structures, which may not yet have been created in
the playing area, with “bridging” references.

4 Conclusion

While there are differences between the two cor-
pora described, the model used for the superficially
simpler reference situation in Pento-CV could be
adapted for MDC-R. One of the main problems is
the massive potential set of referents. The possible
referent set could be reduced by filtering on the
possible subsets at a given point in the dialogue.
Some solutions could involve:

* exploiting the difference between blocks still in
storage and those in the game space.

* allowing co-reference to block (set) types rather
than precise tokens in fixed positions - e.g. a pact
for a line of 8 green blocks.

* using part-whole relations, where the pact in-
volves a hierarchical map from concepts to words
(“[the back of [the chair]]"), not just a flat lan-
guage model, where the volume hierarchies of
structures could also be exploited.

While challenging, we remain optimistic that con-

ceptual pact models are useful for complex refer-

ence domains using some of the above adaptations.
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