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Abstract

Spoken conversation is characterised by rapid
turn transitions and frequent speaker overlaps.
However, existing models of turn-taking treat
dialogue as a series of incremental turns. We
propose PairwiseTurnGPT, a language model
that captures the temporal dynamics of lexical
content by modelling dialogue as two aligned
speaker streams. PairwiseTurnGPT provides a
much more nuanced understanding of how lexi-
cal content contributes to predicting turn-taking
behaviour in speech. By training the model
with data configurations containing different
turn-taking behaviours, we demonstrate the rel-
ative contributions of partial, complete, and
backchannel overlaps for accurately predicting
the variety of turn ends that occur in spoken
dialogue. We also show that PairwiseTurnGPT
improves on serialised models of dialogue for
predicting turn ends and the more difficult task
of predicting when a turn will start.

1 Introduction

Turn-taking—deciding who speaks at what point
during an interaction—is a crucial component of
successful spoken communication between hu-
mans. However, as the example in Figure 1 depicts,
it is an intricate task. The organisation between
conversational partners has fascinated psycholin-
guists for decades, particularly how interlocutors
achieve such short transitions between turns: gaps
between turns typically range from −100 to 500ms
(Levinson and Torreira, 2015) (the negative end
of the range indicating an overlap between turns).
To explain the speed at which turn-taking occurs,
Sacks et al. (1974) pioneered the predictive model
of turn-taking, theorising that people engage in
some form of “projection” to determine an appro-
priate point to begin their own turn while their
partner is still speaking. Under this model, speak-
ers construct their speech such that potential turn
transition points are foreshadowed to their listener.

This raises the question – what features of speech
do listeners rely on to predict potential turn ends?

In spoken conversation, turn-end cues stem from
both the lexical content and its prosodic realisa-
tion. (Ford and Thompson, 1996; Bögels and Tor-
reira, 2015; De Ruiter et al., 2006; Ward, 2019).
However, their relative contributions are unknown.
While models that leverage lexical and prosodic
cues in isolation and combination can learn to pre-
dict some turn-taking behaviour, the simplicity of
linguistic representations used in such models may
obscure the true contributions of lexical content to
turn-end prediction (Ward et al., 2018; Roddy et al.,
2018). More recently, Ekstedt and Skantze (2020)
proposed TurnGPT, a model for turn-end predic-
tion that harnesses the power of pre-trained GPT-2
(Radford et al., 2019). TurnGPT achieves a high
accuracy in predicting turn-endings, demonstrating
the value of lexical information for this task.

TurnGPT has, however, been predominately
trained and designed for written conversation. Like
the GPT-2 model it is based on, the model is limited
to a single stream of input. Although written dia-
logue can be neatly collapsed into a single stream
of interleaved turns, compressing spoken conver-
sation in this way disregards much of the nuance
of realistic turn-taking behaviour. Whilst TurnGPT
has been applied to spoken dialogue, it does so
by serialising overlapping utterances into a single
stream, sometimes requiring significant reordering
or removal of lexical content; Figures 2a and 2b
give examples of the TurnGPT formatting.

This paper seeks to better understand the contri-
bution of lexical content to turn-taking in spoken
communication by more accurately modelling its
temporal dynamics. For this, we propose modelling
transcripts as a dual-stream system that resem-
bles their original production much more closely.
We present PairwiseTurnGPT, a novel architec-
ture capable of modelling these synchronous in-
put streams. Doing so provides insights into how
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Figure 1: A (synthetic) example of overlaps in dialogue.

well lexical content can predict different types of
turn-taking behaviour, including how speakers both
end and begin their turns. By comparing training
data configurations containing varying degrees of
turn-taking complexity (i.e., partial, complete, and
backchannel overlaps), we analyse their relative
contributions to turn-taking prediction.

2 Background

2.1 Theories of turn-taking

Human turn-taking behaviour has generally been
characterised by two processes within the litera-
ture: the reactionary and the predictive approach.
The former assumes that participants understand
end-of-turn signals and react to them accordingly
while the predictive approach posits that listeners
predict the end of the turn in advance to time their
response. The reactionary approach was pioneered
by (Duncan, 1972, 1973, 1974; Duncan and Fiske,
2015) who argued for a precise set of context-free
turn-yielding ‘signals’ which include both vocal
and gestural signals (Yngve, 1970).

Others have argued against the general model
of a reactionary approach because turn-transitions
occur too quickly and turn-yielding signals occur
too late within a speaker’s utterance for the listener
to simply react to an end-of-turn signal (Levinson
and Torreira, 2015; Riest et al., 2015). Under the
predictive account of turn-taking, the speed of turn
transitions is possible because speakers predict ap-
propriate points at which to start their turn (Sacks
et al., 1974). This model views turns as combina-
tions of Turn Construction Units (TCUs). TCUs are
separated by Transition Relevance Places (TRPs)
that mark where a turn-transition (turn-shift) can
but does not have to occur.

2.2 Behavioural evidence

Early research into turn-yielding signals identified
prosodic, syntactic and gestural features that coin-
cide with turn-completions (Duncan, 1972), how-
ever defining their contributions has proved com-
plicated. For example, gestural features (Duncan,

1972) and gaze (Kendon, 1967) have shown to be
useful cues for turn-taking, but they are action-
dependent and more context-sensitive than other
features (Clayman, 2012). Numerous works have
demonstrated the importance of lexical informa-
tion for this task. De Ruiter et al. (2006) found
that end-of-turn prediction was unaffected by the
removal of intonational contours but it was affected
by the removal of lexicosyntactic information. Sim-
ilarly, Magyari and De Ruiter (2012) found that
when participants predicted the remaining part of
a sentence, this prediction was more accurate if
their end-of-turn prediction was also accurate. This
suggests that listeners use predicted utterances to
determine turn-completion. Pickering and Garrod
(2013) also found that listeners imitate the speaker
to determine their intention, which they use along-
side the speaker’s speaking rate to correctly time
their own prepared utterance. Findings on impor-
tance of lexicosyntactic information align well with
the predictive account of Sacks et al. (1974).

Although Ford and Thompson (1996) show that
most TRPs occur at syntactic completion points,
they theorised that multiple factors are used to
determine the completion of TCUs. This theory
was tested by Bögels and Torreira (2015) who also
sought to refute the claim that intonation had no

(a) Overlapping portions of turns between speaker A and B
are ignored by stacking turns in the combined stream. <eot>
tokens mark the end of a speaker turn.

(b) Backchannels and completely overlapped turns from
speaker B are removed in the combined stream.

Figure 2: The difficulties of serialising spoken dialogue
transcripts into a single combined stream.
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effect on turn-taking prediction by De Ruiter et al.
(2006). This was done by performing the same ex-
periment but with instances of questions with equal
syntactic completion points but different turn-shift
locations They found that in cases of syntactical
ambiguity, lexicosyntactic information is not suffi-
cient for turn-end projection and as such they claim
intonation plays a role in disambiguation.

2.3 Computational models for End-of-Turn
Detection and Prediction

Models trained to predict turn-taking behaviour are
another method for investigating the relative con-
tributions of lexical and acoustic cues. Skantze
(2017) show that training with POS tags improves
on a purely prosodic model, which supports the im-
portance of syntactic completeness as a cue for turn-
end prediction. However, Ward et al. (2018) outper-
forms Skantze (2017) using only prosodic features.
Maier et al. (2017) and Roddy et al. (2018) both em-
ployed LSTM RNN models to investigate prosodic
and linguistic features in conjunction; Roddy et al.
(2018) found that acoustic features are more bene-
ficial and Maier et al. (2017) found that linguistic
features performed worse than in their baseline con-
dition. However, linguistic features used in these
studies have been simplistic and are unlikely to
capture pragmatic completeness, a feature deemed
crucial by Ford and Thompson (1996).

Ekstedt and Skantze (2020) proposed TurnGPT
to harness the strong language modelling of GPT-
2. TurnGPT finetunes GPT-2 with a modified ob-
jective for dialogue by adding speakers tokens
and turn-shift tokens in the model input. The
use of a pre-trained language model allows for
greater pragmatic and semantic feature representa-
tion: TurnGPT is shown to rely not only on syntax
but also on the overall pragmatic context of an ut-
terance for turn-end prediction. Jiang et al. (2023)
extended the model to condition its predictions on
a generated response and found further improve-
ments in end-of-turn prediction performance.

However, these models are not designed specifi-
cally for spoken dialogue with much more complex
turn-taking behaviour than written dialogue. Tran-
scripts of spontaneous spoken conversations only
make up 4% of the training set for TurnGPT. More
importantly, the dialogue transcripts are collapsed
into a single stream of input for GPT2. To do this,
dialogue transcripts are serialised based on turn
units; turn units which are fully overlapped or are

classified as backchannels, are removed from the
transcription, whilst consecutive turn units from
the same speaker are concatenated to form each
speaker’s full turns. The process is depicted in
Figure 2a. As well as removing important informa-
tion about a conversation, the process might also
be viewed as fundamentally altering the task of
turn-taking prediction in spoken dialogue.

Recently, TurnGPT representations have been
used by Wang et al. (2024) in conjunction with an
acoustic model to predict backchannel events in
spontaneous dialogue transcripts. Like TurnGPT,
this model is trained using data serialised into se-
quential speaker turns; however, backchannels are
reintroduced using word-level time stamps. Whilst
backchannels are known to be strongly linked to
their prosodic realisation (Gravano and Hirschberg,
2011), Wang et al. (2024) found good performance
for their prediction using only a language model.

The studies described above provide evidence
that lexical information contributes to turn-end pre-
diction, but do not provide a complete picture of
its contribution in spoken conversation. We apply
powerful modern language models to more realistic
representations of turn-taking.

2.4 Characterising overlaps

Overlaps are a frequent and important component
of spoken dialogue. Overlaps can occur when
speakers mispredict the end of a TCU; however,
they can also serve interactional purposes that are
lost when serialising spoken dialogue transcripts
into a single stream.

Overlaps can be categorised as competitive or
cooperative, where speakers are either vying for
the floor or aiding one another in the construction
of a turn Schegloff (2000). As depicted in the ex-
ample in Figure 1, cooperative overlap can consist
of: terminal overlap, where the listener predicts the
end of a turn and begins speaking prior to the other
speaker finishing their turn; turn completion where
the listener helps the speaker complete their turn
but doesn’t intend to take the floor; and backchan-
nels such as “uh huh” and “hmm”. These typically
occur where the speaker requests affirmation from
the listener and have their own set of cues, as de-
fined by Clark (1996).

3 PairwiseTurnGPT: A New Approach

Our proposed approach – which we call Pairwise-
TurnGPT – models each speaker in a conversation
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as an independent stream of tokens. We pair tokens
across the two streams based on word timing infor-
mation, enabling effective modelling of the com-
plex interactions between speakers. This avoids
the deficiencies inherent in the standard serialised
approach (Ekstedt and Skantze, 2020), where turns
are interleaved in a manner that erases turn-taking
phenomena potentially conveying important infor-
mation. Though Wang et al. (2024) only incorpo-
rate a limited aspect of temporal dynamics, their
results demonstrate the value of such information.
By aligning streams at the word level, we encode
this structure much more explicitly.

3.1 Model Architecture

PairwiseTurnGPT is composed of a GPT-2 stream
for each speaker in the dialogue. A diagram is
included in Figure 4). Similarly to the spoken dia-
logue model proposed by Nguyen et al. (2023),
GPT-2 weights are shared between the streams.
Through a multi-head cross-attention layer in each
transformer block, predictions in each stream are
conditioned on the conversational history of both
speakers. The training objective is the sum of the
cross-entropy loss for each speaker streams1.

To incorporate spoken turn-taking phenomena
in PairwiseTurnGPT, we use word-level timings to
align the speaker streams. GPT-2’s BPE tokenisa-
tion functions at the sub-word level, therefore we
obtain token timings by uniformly splitting word
timings across tokens (Figure 5 depicts an exam-
ple). Tokens are then aligned in a pairwise manner.
For tokens with no significant overlap (defined as
an overlapping duration no greater than 50% of the
shorter-duration word), an empty <emp> token is
used to make up the token pair. An example of this
alignment is shown in Figure 3a.

3.1.1 Turn-Level Annotation
Pairwise alignment enables our models to learn
taking behaviours that involve fine-grained overlap
between conversational partners. From the aligned
data we identify categories of such turn ending
strategies to better understand which behaviours
are captured by PairwiseTurnGPT. Backchannels
involve one speaker interjecting a short utterance
such as “hmm”, “uh huh” or “yeah” to provide
feedback to the speaker (Ward, 2004). We follow
(Ekstedt and Skantze, 2020) and define these based

1We release our code at https://github.com/
Sean-Leishman/PairwiseTurnGPT. This includes
code for model training and data preprocessing.

on their lexical content2 and a pause of at least 1s
between surrounding turns from the same speaker.
Complete Overlap occurs where one speaker be-
gins and ends their turn before the other speaker
finishes theirs, as depicted in Figure 2b. Yield
Turn-Shift are when one speaker begins their turn
before the other speaker finishes theirs (i.e. a partial
overlap). Yield turns are those that contain an over-
lap of > 0.1s, or where the other speaker produces
an overlap within 2s of the turn ending. Normal
Turn-Shift turns involve one speaker finishing their
turn and the other speaker beginning theirs after a
pause. The difference between normal and yield
turns is shown in Figure 3b. Appendix C shows
how turn types are distributed in Switchboard.

The full alignment process is demonstrated in
Figure 3a which includes turn annotation: the deter-
mination of the type for each utterance; turn align-
ment: ensuring each token is aligned appropriately
and turn token addition: adding in the end-of-turn
token corresponding to the determined turn type.

4 Experimental Setup

4.1 Model

To allow comparison with TurnGPT, we initialise
our model with GPT2-base which consists of 124M
parameters, 12 layers, 12 heads and 768 hidden
units. The pre-trained weights were obtained from
the OpenAI GPT2 model from the Hugging Face
Transformers library (Wolf et al., 2020). The cross-
attention weights are initialised using the default
Hugging Face method by sampling a unit normal
distribution. We fine-tune using the AdamW opti-
mizer with a learning rate of 6.25e−5 and a weight
decay of 0.01. All models are trained for 5 epochs
or until the validation loss does not decrease for
two consecutive epochs with batches of size 4.

4.2 Data

We train and evaluate PairwiseTurnGPT on the
Telephone Speech Switchboard Corpus which con-
sists of 2430 conversations between 542 partici-
pants (Godfrey et al., 1992; Deshmukh et al., 1998).
Although the dataset is not large, it includes manual
transcriptions and manually corrected word tim-
ings, making it an ideal base for our study. We
remove all annotations of non-verbal vocalisations
from the transcripts while partial words, mispro-
nunciations and coinages are replaced with the full

2We use the list of candidate backchannel responses de-
fined in Ekstedt and Skantze (2020)

https://github.com/Sean-Leishman/PairwiseTurnGPT
https://github.com/Sean-Leishman/PairwiseTurnGPT
https://huggingface.co/docs/transformers/en/model_doc/gpt2
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(a) Pairwise data preprocessing: tokens are aligned based on token timing infor-
mation. B’s first utterance is labelled as a complete overlap; the end of A’s first
utterance is labelled as a “yield” turn shift on account of the partial overlap with B’s
second utterance, whilst B’s second utterance is labelled as a normal turn shift.

(b) Yield & normal turn-shift; labels are
based on the amount of overlap with the
other speaker’s turn.

Figure 3: Data Labelling & Preprocessing

intended word. Switchboard doesn’t have a stan-
dard evaluation set for this task, so we randomly
split the corpus into train, validation and test sets
([90/5/5] proportions, respectively).

4.3 Training data configurations

We train with pairwise data configurations that in-
clude varying degrees of turn-taking behaviour to
understand their respective contributions to turn-
end predictions.

• Single stream: As a baseline, we examine
the performance of modelling isolated con-
versation streams. For this, we remove cross-
attention and concatenate turns in each stream
so no alignment between speakers takes place.

• Serialised: We simulate TurnGPT dialogue
representations by aligning streams to turns
rather than tokens, thus removing all over-
lap. Content tokens in one stream are always
aligned with <emp> tokens in the other.

• Aligned: Partial overlaps, where a speaker
interrupts prior to a turn ending, are included
but not complete overlaps or backchannels.

• Aligned + Overlaps: Both partial and com-
plete overlaps are included.

• Aligned + Backchannels: Partial overlaps
and backchannels are included.

• Aligned + Backchannels & Overlaps: The
fully aligned condition contains all turn-taking
phenomena.

4.4 Evaluation Metrics

The end-of-turn prediction task involves mapping
next-token prediction to a binary turn end predic-
tion. We discretise the probability of end-of-turn
tokens into a binary label using a threshold tuned
on the validation set. Turn prediction is evaluated
using Balanced Accuracy (bAcc), the mean of the
true positive and true negative rates for turn end
prediction; it is robust to the unbalanced nature of
turn-end tokens and allows more direct comparison
to the TurnGPT results. We also evaluate language
modelling through token-level perplexity (PPL).

5 Results

5.1 Validating the pairwise architecture

We begin by establishing that the PairwiseTurnGPT
architecture performs at a similar level to the origi-
nal TurnGPT model. We also investigate the effect
of the second speaker stream using different train-
ing configurations, where no cross-attention layer
is introduced. We consider conditions where each
stream consists of turns concatenated together (i.e.
the single stream condition) to simulate no knowl-
edge of the other speaker; and where each stream
includes empty tokens (i.e. serialised without cross-
attention), which simulates the temporal aspect of
the other speaker but without any lexical content.

Each PairwiseTurnGPT configuration is evalu-
ated using the serialised data configuration in Ta-
ble 1. TurnGPT and serialised PairwiseTurnGPT
achieve nearly identical turn-end prediction per-
formance; however, PairwiseTurnGPT has higher
PPL, indicating a weaker internal representation
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Model bAcc ↑ PPL ↓

TurnGPT 0.828 29.3

PairwiseTurnGPT
Single Stream 0.805 39.3
Serialised w/o CA 0.825 32.9
Serialised 0.828 31.3

Table 1: End-of-turn prediction accuracy and perplex-
ity scores for serialised data across models. Pairwise-
TurnGPT contains <emp> tokens while TurnGPT does
not, so <emp> tokens are not evaluated.

of language. This may be a result of the more
demanding training procedure.

We find that a reasonable turn-end accuracy of
0.805 can be achieved using the single-stream con-
figuration. Without knowledge of the other speaker,
this model is reliant on the syntactic completeness
of the speaker’s current utterance and a partial his-
tory of the conversation. Removing cross-attention
(CA) from the serialised TurnGPT setup demon-
strates how model performance is influenced by
the other speaker’s lexical content. We find that
much of the serialised model performance can be
achieved without cross-attention (i.e., only using
information about when the other speaker is active).

5.2 Training data configurations

We evaluate the effect of training using our data
configurations that incrementally approach the orig-
inal spoken realisation. Rather than evaluating over
a serialised configuration, as in Table 1; we evalu-
ate each model on the fully-aligned configuration
of the test data; results are shown in Table 2.

Single stream model The turn-end accuracy
scores confirm that a speaker’s turn ending is at
least somewhat predictable from their own con-
versational history, which contains information re-
garding the syntactic and pragmatic completeness
of the current utterance. As expected, all mod-
els trained to condition their predictions on both
speaker streams improve over the single stream
set up for all turn end types; even a model trained
on the serialised data configuration can achieve a
14-point increase in accuracy.

Aligned vs. serialised Table 2 shows that the
lossy encoding of the serialised configuration ig-
nores much of the complex turn-taking behaviour
in spoken dialogue: training on the aligned config-

uration produces better overall accuracy than the
serialised configuration. The overall improvement
comes primarily from the model’s ability to pre-
dict yielded turn ends; we find a slight decrease in
the ability to predict standard turn endings. The
partial overlaps in the aligned configurations are a
common feature of spoken dialogue; yielded turns
constitute 18.11% of turn endings in the dataset
(see Table 4). While their inclusion may compli-
cate the prediction of normal turn endings, they
are extremely valuable for capturing the true va-
riety of turn ends in spoken conversation. How-
ever, in regard to normal turn-ends, performance
varies between the serialised and aligned configu-
rations. This suggests that for simpler turn-ends
the model could benefit from developing a simpler
understanding of turn-taking, without considering
additional phenomena.

Effect of backchannels & overlaps Table 2
shows that models trained on aligned configura-
tions, which include backchannels, are the most
accurate overall. Only these configurations outper-
form the serialised data configuration for predicting
normal end-of-turns. Their influence may reflect
their communicative functions in spoken dialogue:
for example, listeners can employ them to inform
the speaker of their intention to continue listening
(Yngve, 1970). Even from their lexical content
alone, our results demonstrate that backchannels
are useful cues for turn-taking.

The inclusion of overlaps also improves turn-end
prediction over the aligned configuration, however,
to a lesser extent. Overlaps may be more difficult
to leverage as they make up a smaller proportion
of the turn-end tokens in our corpus and are far
less constrained than backchannel responses. For
example, overlaps can be cooperative or competing
acts in dialogue (Schegloff, 2000). If an overlap
is competing, it may be less likely that its resolu-
tion can be derived from its lexical content alone.
However, the inclusion of overlaps in the aligned
data achieves the highest yield turn-ending predic-
tion accuracy as the model can better differentiate
between complete and partial overlaps.

Although the combination of both features still
provides clear improvement over the serialised con-
dition, including all behaviours doesn’t necessar-
ily provide an additive benefit for predicting all
turn ends. Notably, the accuracy for yield turns
in the fully aligned configuration deteriorates com-
pared to that aligned with only overlaps, suggesting
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Configuration bAcc ↑ PPL ↓
Normal Yield All Overlap Non-Overlap All

Single stream 0.728 0.640 0.710 – – –

Serialised 0.868 0.807 0.852 206 5.63 7.67

Aligned 0.863 0.927 0.881 48.1 5.77 6.95
+ Backchannel 0.872 0.930 0.914 41.3 5.68 6.55
+ Overlap 0.866 0.936 0.890 40.2 5.64 6.69
+ Backchannel & Overlap 0.869 0.934 0.915 36.9 5.67 6.49

Table 2: End-of-turn prediction balanced accuracy over turn types. “All” consists of normal, yield, backchannel
and complete overlap turn endings. Perplexity is computed on overlapping, non-overlapping, and all tokens of the
fully-aligned test set.

that backchannels may blur the distinction between
yields and normal turn endings.

Rule-based comparison To probe the necessity
of language modelling for this task, we designed a
rule-based classifier to predict an end-of-turn when-
ever two speakers speak simultaneously. This clas-
sifier predicts a turn-shift whenever the listener
interrupts the current speaker’s utterance. Using
the setup in Table 2, the classifier achieves a bAcc
of 0.890 over yielded turn ends. This is a strong
improvement over the serialised model accuracy
of 0.807, indicating that an interruption is a signif-
icant signal. However, the gap between the fully
aligned model with 0.934 accuracy shows that lex-
ical content provides additional predictive power.

Perplexity As expected, the lowest PPL is found
for the model trained on the fully aligned data. Al-
though the serialised configuration does not han-
dle overlapping tokens well, it produces the low-
est “non-overlap” PPL. This model may be better
able to model lexical content as it does not need
to learn temporal aspects of overlapping tokens.
The introduction of partial overlaps in the aligned
configuration allows the model to better represent
overlaps; each subsequent data configuration yields
further improvement. By representing overlapping
portions of the dataset more effectively, the model
may learn patterns regarding how overlaps are re-
solved and lexical features that prompt a listener to
produce an overlap.

Similar to the trends in end-of-turn prediction,
the inclusion of backchannels in the aligned train-
ing data produces a larger overall reduction in PPL
than overlaps. However, these configurations pro-
duce similar PPL scores across all token sets. The

“overlap” subset does not contain backchannels and
so while we may expect the backchannel configura-
tion to perform similarly to the aligned configura-
tion, it achieves a PPL that is closer to the aligned
with overlaps configuration. This suggests that by
learning to represent backchannel turns, the model
can extrapolate to overlaps relatively well.

As expected, the fully aligned configuration
trained with all types of overlap performs best over-
all and in the overlap subset of the fully aligned
test set. However, this is not the case for non-
overlapping tokens where the result is essentially a
weighted sum of the PPL resulting from the aligned
with backchannels and aligned with overlaps con-
figurations. This is reflected in end-of-turn pre-
diction and suggests a degree of uncertainty when
combining two types of features.

5.3 Prediction of turn starts
Thus far, we have examined turn-taking through
the lens of turn ends. However, pairwise alignment
also allows us to analyse the different strategies
people use to initiate a turn. Here, we evaluate how
useful lexical content is for determining interjec-
tion points for different types of turns.

We predict the beginning of a turn by summing
the probability of all non-<emp> tokens and pro-
ducing a binary prediction as was done for the
end-of-turn task. Using the fully time aligned test
configuration, we evaluate predictions at points
where the current token is the <emp> token. We
consider several turn start strategies: “Normal” is
the start of a non-overlapping turn; “Interruption”
is the start of an overlap turn in which the inter-
rupted speaker yields the floor; “Overlap” is the
start of a completely overlapped utterance; “BC” is
the start of a backchannel.
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Configuration
bAcc ↑

Normal Interruption Overlap BC All

Serialised 0.702 0.640 0.581 0.592 0.640

Aligned 0.746 0.669 0.592 0.604 0.669
+ Backchannel 0.809 0.763 0.684 0.753 0.763
+ Overlaps 0.774 0.700 0.614 0.647 0.700
+ BC & Overlaps 0.819 0.774 0.689 0.765 0.774

Table 3: Predicting start points for different turn types.

As expected, Table 3 shows that overlap turn
starts are the most difficult type of turn start to
predict. The addition of turn-taking phenomena
improves prediction across all turn types. Inter-
estingly, the addition of backchannels is far more
useful than the addition of overlaps, mirroring our
findings from turn-end prediction performance.

Predicting overlap turn starts is worse across
all configurations compared to normal turn starts,
likely because overlapping turns do not align with
a turn end. However, the fact that yielded turn
endings can be accurately predicted suggests that
lexical content provides an indication of suitable
interjection points in conversation. Results are sim-
ilar for backchannel turn predictions.

Interestingly, the fully time aligned configuration
performs best across all turn start types. However,
this was not the case for predicting the end of a turn
where this configuration was not the most accurate
for normal or yield turn ends. We posited that
the result over end-of-turns is due to the overall
complexity of the training data. However, it seems
that by framing the task differently, the model is
able to leverage this information.

6 Discussion & Conclusions

By modelling spoken dialogue transcripts as two
separate streams of lexical content, our proposed
PairwiseTurnGPT provides a much more nuanced
understanding of how lexical content contributes to
the predictability of turn-taking behaviour than was
previously possible. It also improves the accuracy
of predicting turn ends over models of dialogue
serialised at the level of turns.

We find that both the timing and content of
overlaps contribute jointly to increased predictive
power. By comparing training data configurations
containing different turning-taking behaviours, we
demonstrate the relative contributions of partial,
complete, and backchannel overlaps for accurately
predicting the variety of turn ends and starts that
occur in spoken dialogue. Each training data aug-

mentation improves overall turn-end prediction
but through different means. Though the under-
lying intent of backchannel responses is known
to be mediated by their prosodic realisation, our
results show that the lexical content alone is al-
ready a valuable cue for predicting turn ends (Lai,
2009). Overlaps are also useful but to a lesser
extent. Though they complicate non-overlapped
turn-end predictions, they are crucial for accurately
modelling yielded turns. We find that the alignment
configuration containing all forms of overlap can
muddy the distinction between yields and normal
turn endings. Interestingly, training with this data
configuration consistently improves predictive per-
formance across turn start types, suggesting that
predicting turn starts and ends may benefit from
different information. For example, Jiang et al.
(2023) has shown that turn starting points are better
predicted when conditioned on the content of the
upcoming response. Though related, our results
highlight the importance of investigating turn-ends
and turn-starts as separate prediction tasks.

By allowing for synchronous streams of lexical
content, PairwiseTurnGPT provides nuanced in-
sight into how much lexical context contributes to
the prediction of turn-taking behaviours in spoken
dialogue. This model has the potential to be used
in dialogue systems or for gaining deeper insights
into human turn-taking behaviour.

Limitations We selected the Switchboard
dataset as a representation of extremely natural
spoken dialogue and for its manually annotated
transcripts and timestamps. However, it is limited
in size. Some of our results suggest that the training
set may not be sufficiently large to capture the com-
plexities of these interactions fully. In particular,
the cross-attention layer that encodes interactions
between the two speaker streams is trained from
scratch. For example, the difference in accuracy
between the serialised conditions with and without
cross-attention in Table 1 is less significant than we
might expect. Investigating larger training corpora
may allow the model to better capture the inter-
action between both streams. Exploring the pre-
dictability of turn-taking in other types of spoken
conversation, such as interviews or conversations
between friends, could also further illuminate the
role of lexical information in turn-taking prediction.
We expect the inclusion of prosodic information to
improve turn-taking behaviour prediction further
and leave this for our future work.
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A Model architecture

Figure 4: PairwiseTurnGPT Architecture

B Sub-word token alignment

Figure 5 shows how the word ‘uhhuh‘ is decom-
posed into three sub-word tokens ([“uh”,“h”,“uh”])

Figure 5: Deriving subtoken alignment.

under the GPT-2 byte pair encoding tokenizer. The
timing of each sub-word token is approximated
from the original word-level timestamps by split-
ting the word duration uniformly across the con-
stituent tokens.

C Turn type frequency

Turn Type Token Count %

Normal <eot> 74522 45.19
Partial Overlap <yield> 29861 18.11
Overlap <eint> 16250 9.85
Backchannel <ebc> 44281 26.85

All 164914 -

Table 4: The frequency of each turn type in Switchboard
using our turn annotation procedure.
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