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Abstract

This paper explores using Large Language
Models (LLMs) to generate dialogue datasets
for training lightweight Natural Language Un-
derstanding (NLU) models for use in modu-
lar task-oriented dialogue systems. Employing
a schema-guided framework and prompt en-
gineering, we explore how synthetic dialogue
data compares to MultiWoZ data on NLU tasks.

1 Introduction

LLMs are impressive in their capability to partic-
ipate in open-domain dialogue, including under-
standing user utterances. At the same time there
are problems with LLMs, such as producing mis-
leading or false output ("hallucinations"), failure to
adhere to instructions, sensitivity to small nuances
in prompt design, costs and environmental impact
(Rillig et al., 2023), and reliance on constant calls
to proprietary LLMs in the cloud.

For many practical, domain-specific applica-
tions, a more lightweight controllable modular dia-
logue system may still be a viable alternative. How-
ever, it may often be desirable also in modular sys-
tems to make use of the advantages of LLMs. Us-
ing LLMs to generate training data for lightweight
NLU models is one example of this. NLU models
are designed to e.g. determine user intent, identify
key entities and/or decipher sentiment.

Collecting datasets of human-human dialogue
is labour-intensive, expensive, and may involve
privacy concerns. Wizard-of-Oz (WoZ) data col-
lection (Budzianowski et al., 2018) also requires
manual effort for data cleaning and annotation.
(Budzianowski, 2019).

Synthetic data generation offers a potentially
viable and affordable solution for NLU training.
However, synthetic datasets in general may exhibit
biases in data distribution, may contain incomplete
data and inconsistent annotations, and lack may
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diversity and nuance (Hao et al., 2024; Li et al.,
2023).

In this paper, we investigate how NLU models
trained on synthetic data compare to models trained
on real-world data, when both are tested against
real-world data.

2 Method and dataset

To generate synthetic dialogues, we use a schema-
guided framework inspired by (Li et al., 2023) com-
bined with strategic prompt engineering (Rastogi
etal., 2020). The schema-guided approach involves
defining a structured framework that outlines the
possible states and transitions in a dialogue, en-
suring that the generated dialogues are viable and
aligned with specific conversational objectives.

3 Using LLMs to generate dialogues

As explored in Steindl et al. (2023) and Park et al.
(2023), LLMs can produce dialogues that closely
mimic human conversations. LLM dialogue gen-
eration can be fine-tuned for specific applications,
such as asking relevant and context-specific ques-
tions (Horiuchi and Higashinaka, 2022), replicating
complex dialogue patterns across various domains,
Liu et al. (2023) and answer retrieval for a retrieval-
based conversational character (Chen and Artstein,
2024).

4 Data and Models

Previous approaches to generating synthetic dia-
logue data have but encountered significant issues.
These include models deviating from given tem-
plates (Steindl et al., 2023), generating contextually
irrelevant responses (Liu et al., 2023), and facing
scalability challenges (Rastogi et al., 2020).

The method proposed here tries to address these
problems by enforcing strict dialogue schemas
through prompt engineering, ensuring models ad-
here to templates. Additionally, the dialogue-
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Figure 1: Experiment I — Domain Classification

generating model is exposed to the entire dialogue
history in each iteration to prevent out-of-context
utterances, in order to improve the coherence and
relevance of synthetic dialogue.

Several dialogue datasets have been used for
training NLU models. A prominent dataset is
MultiwWOZ, a multi-domain wizard-of-oz dataset
(Budzianowski et al., 2018) that includes several
annotations useful for training NLUs. We con-
structed a synthetic dataset that mirrors the struc-
ture and selected domains of MultiWoZ 2.2. We
used 458 train and 500 hotel domain dialogues.
The synthetic dataset was similarly constrained to
approximately 516 train and 500 hotel domain di-
alogues. The creation of the synthetic dataset in-
volved the following steps': schema generation (us-
ing GPT-3.5), dialogue generation from schemas
(using GPT-4), dialogue clean-up (to remove in-
consistencies and errors introduced in generation),
alignment of annotation alignment with MultiWoZ
structure, and splitting the dataset into training,
validation, and testing subsets with proportions of
80%, 5%, and 15%, respectively.

5 Experiment and results

We trained three different NLU models: Support
Vector Machine(SVM), Naive Bayes, and BERT
on both our synthetic dataset and MultiWoZ. Each
model is evaluated on 3 tasks: domain classifica-
tion, mulitclass intent classification, and slot multi-
labelling.

On the domain classification task (Figure 1),
the models trained on MultiWoZ perform better
than those trained on the synthetic dataset, with
the exception of the BERT model which performs
poorly overall. However, models trained on the syn-
thetic dataset perform better than a random baseline
model. On the intent classification task (Figure 2),

"The source code for the dialogue generation frame-
work is available at https://github.com/Devix71/nlu_
dialogue_dataset_generator
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Figure 2: Experiment II — Intent Classification
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Figure 3: Experiment III — Slot labeling

the MultiWoZ-trained models in general outper-
form the synthetic-trained ones.

In slot labeling (Figure 3), models detect the
presence of slots without extracting their values.
The synthetically-trained models have an unsatis-
factory performance. Some slots were not labelled
atall. SVM was not always able to beat the baseline
model (which assigned the book_train category to
every utterance). The Naive Bayes model predicted
the same label for every utterance.

6 Error analysis

Error analysis reveals some limitations of the
method used, including inconsistent quality, where
generated dialogues often lacked the complexity
that characterizes natural dialogue. Another limi-
tation is bias, causing repetitiveness with respect
to phrasing and chosen topics and converging on
a limited number of scenarios focusing primarily
on Eurocentric settings (e.g. constantly referenc-
ing cities such as London and Cambridge). Fur-
thermore, annotation quality is a concern, and the
LLM:s introduce hallucinated slots and intents that
do not conform to the established MultiWOZ anno-
tation guidelines.

7 Conclusion and future work

We conclude that synthetic data is useful for NLU
training, and more so for low-granularity tasks, but
not as useful as human data. This is in line with
e.g. Chen and Artstein (2024).
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