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Abstract

The paper argues with reference to several ex-
amples that dialogical dynamic semantics, the
idea that meaning arises from emergent public
context, breaks down over extended temporal
periods, ignoring as it does individual differ-
ences specifically with respect to memory dy-
namics. We argue, following several recent
works, that this highlights the need for a seman-
tics that is brain-based. We offer a sketch for
such a semantics by developing a hybrid model
that integrates work on memory–oriented di-
alogue semantics with work in the semantic
pointer architecture for functional brain mod-
elling.

1 Introduction

Dialogical dynamic semantics, the idea that mean-
ing arises from emergent public context, can be
effective for dialogue over short temporal periods.
But over more extended temporal periods, dynamic
semantics begins to break down, ignoring as it does
individual differences specifically with respect to
memory dynamics. Consider the following mun-
dane story: I encounter my neighbour’s daughter
Swann when she gets locked out and learn her
name. Two years pass: I encounter Swann oc-
casionally, as I hear her close the entrance door, but
I do not hear her name spoken. One morning I see
Chloé, Swann’s sister, and wonder: what is Chloe’s
sister’s name? I remember it starts with ‘S’. But I
cannot remember the name. This lasts for a while.
I see a list of names and know that they are not the
name. Finally I see the name and recognize it. This
inner dialogue can also be envisioned as a series of
external dialogues:

(1) a. Dialogue 1: Neighbour: This is Swann.
Me: Nice to meet you.

b. Interlude (time passes, events happen)

c. Dialogue 2: (I see Chloé) Me: How is
um (pause, frowns) your sister? Chloé:
Swann? Me: Yes.

(2) provides an additional illustration of the ef-
fect of time—dissociation between event-based,
individual-based, and metalinguistic information,
as exemplified in (2b), a dissociation backed by
considerable clinical evidence (Greenberg and Ver-
faellie, 2010; Bastin et al., 2019).

(2) a. A: Look, someone’s broken the door han-
dle. B: Right. C: Yeah it’s this woman,
Sloane.

b. (a week later) D: What had happened? A:
What’s her name, I forget, broke the door
handle. D: and Bill was there too appar-
ently. B: Who? A: Her partner. B: I don’t
know him. A: We met him last week. B:
Oh, I see.

We think cases such as these highlight the need,
already outlined in several works (Eliasmith, 2013;
Baggio, 2018; Hagoort, 2020; Macnamara and
Reyes, 1994; Jackendoff, 2002; Seuren, 2009) for a
semantics that is brain-based (where again one can
appeal to the (biophysical/biochemical) neuronal
and the neuron-network levels): generalizations
about behaviour can occur at various levels (Marr,
1982; Bechtel, 2007; Eliasmith and Kolbeck, 2015);
appealing also to brain-based levels need not mean
that all explanations are most usefully stated at
those levels—for instance, as we will see certain
rules concerning dialogue coherence.

And yet, we think, nonetheless, that this data
enables one to make stronger claims, namely that a
brain-based account impacts also on the structure
of the cognitive theory one can and should pro-
vide. In particular, it requires us to capture (i) the
intrinsically associative character of memory (ex-
emplified here by the speaker’s thinking of Chloé’s
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sister when seeing Chloé, mirrored by correspond-
ing external dialogue coherence) (ii) dissociative
aspects in cognitive states (exemplified by forget-
ting Swann’s name but not Swann and data in (2)),
(iii) the pervasive nature of forgetting and the non-
redundancy of reproviding (forgotten) information,
and (iv) differences in communal memory emer-
gent from individual divergences.

The paper is structured as follows: in section 2
we introduce relevant background about the vari-
ous neural levels. We develop our account in two
stages: in section 3 we apply an externalist, though
memory-oriented dialogue framework NeuroKoS
(Ginzburg and Lücking, 2022) to the data, which
can only offer a partial account; in section 4 we
discuss a simple model of the data using the Seman-
tic Pointer brain-modelling framework (Eliasmith,
2013), which offers an account of the aspects which
NeuroKos cannot handle.

2 Learning and Forgetting at the Neural
Level

2.1 Short-term v. Working Memory v.
Long-term Memory

The neuropsychological basis for short-term and
long-term memory (STM, LTM) distinctions are
both experimental (e.g., ability to recall number
sequences or labelled pictures after a single presen-
tation) and based on studies of patients, most no-
tably the patient Henry Molaison (aka H.M.), well
known for being high functioning despite lacking
the ability to form new (episodic) memories that
could persist beyond 45 minutes (Scoville and Mil-
ner, 1957; Milner and Klein, 2016; MacKay et al.,
2013; Squire and Wixted, 2011). Working memory
(WM) is a distinct though closely related notion to
short-term memory amounting to ‘an actively en-
gaged system used to store information that is rele-
vant to the current behavioral situation.’ (Eliasmith,
2013, p. 211). Baddeley (1988, 2012) offered both
arguments for the notion of WM and developed an
influential framework, M-WM, which postulates a
clear structure for WM (on which more below); an
alternative to this was proposed by Cowan (2001),
who emphasizes the capacity constraints of WM.
Both Baddeley’s episodic buffer and Cowan’s fo-
cus of attention are chunk limited buffer stores, and
both models by and large agree on a capacity limit
of four chunks. An important issue such theories
have contended with is whether working memory
is a separate system (Baddeley) or merely a tempo-

ral slice from a unified memory system (Cowan, on
one reading, though ultimately the differences be-
tween the frameworks are not large). Norris (2017)
argues that STM/LTM are distinct systems given
the need for (i) memory for previously unencoun-
tered information, (ii) storage of multiple tokens
of the same type, and (iii) variable binding (in one
sense of the term). Be that as it may, the exact rela-
tionship between WM (which is evinced in actual
use) and STM/LTM is not fully clear. What is clear
is that there are WM/LTM distinctions at neural
and neural network levels.

2.2 Short-term and Long-term Learning at
the Neural Level

Given the relative ease of access to their neural
systems, the solidly established results on learning
at the neural level have arisen from various inverte-
brates and from rodents. As exposited by Kandel
et al. (2014) one can distinguish two classes of
mechanisms: short/medium term changes in synap-
tic strength arising from specific patterns of electri-
cal activity or the action of modulatory transmitters;
long-lasting synaptic and behavioral memory plas-
ticity requires epigenetic mechanisms—changing
gene expression without modifying the underlying
DNA: on the one hand the inhibition of miRNA-
124 which facilitates the activation of CREB-1,
which begins the process of memory consolidation,
and on the other hand the delayed activation of
piRNA, which leads to the methylation and conse-
quent repression of the promoter of CREB-2. This
allows CREB-1 to be active for a longer period of
time.

2.3 Short-term and Long-term Learning at
the Neural Network Level

As far as LTM goes, it is commonly assumed that
memories are not stored in the hippocampus as
such, but arise from the interaction of representa-
tions based at the hippocampus with neocortical
information: sparsely-coded hippocampal neurons
referencing and activating the neocortical neurons
to re-create the content of an experience (Teyler and
Rudy, 2007). Semantic memories, arising by gen-
eralisation across the neocortical representations
of episodic memories are resistant to hippocampal
damage. For a long period, the fact that perfor-
mance on many explicit tasks is affected by tem-
porally graded retrograde amnesia was explained
by assuming that the hippocampus is only a tem-
porary repository for memory whereas the neocor-
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tex stores the memory (Squire and Wixted, 2011).
More recently, evidence emerged that mediotem-
poral lobe lesions do not lead to a pattern of retro-
grade amnesia and also affect non-episodic, seman-
tic memory. Sekeres et al. (2018) propose Trans-
formation Trace Theory (TTT): transformed mem-
ories (i.e., ones shorn of detail) come to be rep-
resented in distributed neocortical networks from
where they can be recovered without the involve-
ment of the hippocampus; detailed episodic memo-
ries are always dependent on the hippocampus. The
evidence for this is evidence that once a consoli-
dated memory is reactivated, it can become labile
and once again become susceptible to the effects
of hippocampal disruption.

This leads to at least the following sources for
forgetting, which models of forgetting need to tie
into:

1. Non-consolidated short-term memories;

2. Detail modification during activation (Sekeres
et al., 2018);

3. Loss as a result of neurogenesis (Weisz and
Argibay, 2012; Epp et al., 2016);

4. Weight decay and synapse elimination
(Richards and Frankland, 2017).

3 Towards an Account

3.1 Combining Memory and Dialogue
GameBoards

As mentioned earlier, we draw on an earlier pro-
posal, the only existing one to our knowledge,
for combining externalist dialogue semantics with
memory structure (Ginzburg and Lücking, 2020,
2022). But first, a brief explanation of externalist
dialogue semantics, as conceived in the framework
KoS (Ginzburg, 1994; Larsson, 2002; Purver, 2004;
Fernández, 2006; Ginzburg, 2012)—formulated
using the logical framework TTR (Cooper and
Ginzburg, 2015; Cooper, 2023). Instead of assum-
ing a single context to be operative, a collective
notion is emergent (Stephens et al., 2010) from
individual Total Cognitive States (TCS), one per
participant. A TCS has two partitions, namely a
private, and a public one, the DGB.

(3) TCS =def
[

public : DGBType
private : Private

]

Dialogue gameboards (see (4) for the basic struc-
ture) track various aspects of the emerging con-
text in terms of concrete real world entities and
more abstract ones constructed in TTR. The param-
eters spkr and addr together with the addressing
condition (at a given time) track verbal turns and
mutual engagement; vis-sit represents the visual
situation of an agent, including his or her focus
of attention (foa), which can be an object (Ind),
or a situation or event (Rec), relevant inter alia
for processing gestural answers; facts represents
the shared assumptions of the interlocutors; uncer-
tainty about mutual understanding that remain to
be resolved across participants—questions under
discussion—are a key notion in explaining coher-
ence and various anaphoric processes (Ginzburg,
2012; Roberts, 1996) and is tracked by the parame-
ter qud; dialogue moves that are in the process of
being grounded or under clarification are the ele-
ments of the pending list; already grounded moves
are moved to the moves list, which captures ex-
pectations arising due to illocutionary acts—one
act (querying, assertion, greeting) giving rise to
anticipation of an appropriate response (answer,
acceptance, counter–greeting), also known as adja-
cency pairs (Schegloff, 2007); finally, mood repre-
sents the publicly accessible emotional aspect of an
agent that arises by publicly visible actions (such
as non-verbal social signals, as well as by verbal ex-
clamations), which can but need not diverge from
the private emotional state:

(4) DGBType =def

spkr : Ind
addr : Ind
utt-time : Time
c-utt : addressing(spkr,addr,utt-time)
facts : Set(Prop)

vis-sit =
[
foa : Ind ∨ Rec

]
: RecType

pending : List(LocProp)
moves : List(IllocProp)
qud : POSet(Question)
mood : Appraisal


TCSs and in particular DGBs change as a result

of private perception and public interaction, which
can be described in terms of conversational rules
(Larsson, 2002). We exemplify here three rules
(minor variants of rules in Ginzburg, 2012, Chap-
ters 4,6) that will play a role subsequently. The first
exemplifies coherence at the level of Moves, the
second the emergence of presuppositions, the third
the coherence of clarification questions:
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(5) a. Interlocutor introduction rule: given
that the LatestMove is Introduce(A,B,C),
this licenses the next move to be
Greet(B,C).

b. FACTS update following asser-
tion acceptance: if the Latest-
Move is Accept(A,p), this licenses
FACTS:=FACTS ∪{p}

c. Confirmation question emergence: if A’s
utterance u is (a sub-utterance of) the max-
imal element of Pending, QUD can be up-
dated with the question did A mean c by
u? (c some potential referent/content).

KoS provides a theory of meaning for highly
context dependent elements such as non-sentential
utterances (6a,b), filled pauses (6c), and non-verbal
social signals such as smiles or frowns (6d,e),
which figure further below.

(6) a. yes 7→ p (p? is MaxQUD);

b. right 7→ Understand(A,u) (u is MaxPend-
ing, A current speaker);

(both Ginzburg, 2012)

c. um 7→ Makes
λxMeanNextUtt(spkr,Pending,x)
MaxQUD (Ginzburg et al., 2014)

d. smile: Given A as speaker, s as smilable
event, 7→ Pleasant(s,A)

e. frown: Given A as speaker, f as frownable
event, q : Question 7→ Raise(f ,q,A)

(both Ginzburg et al., 2020)

The essence of the proposal of Ginzburg and
Lücking (2020, 2022) is to tie the externally–
oriented data structure used to describe dialogue dy-
namics, the dialogue gameboard (Ginzburg, 2012),
with working and long-term memory. Thus, they
propose to ‘break up’ the dialogue gameboard into
WM and LTM components, building on models
for WM (Baddeley, 2012) and LTM (Bastin et al.,
2019), respectively—see Fig. 1 for a graphical sum-
mary. In particular, they proposed to (i) view con-
versations as episodes tracked in episodic memory,
(ii) distinguish within LTM the following compo-
nents: (a) episodic memory typically associated
with the hippocampus, (b) entity-based memory

(based in the perirhinal cortex, Bastin et al., 2019),
and (c) semantic memory (mainly localized in the
posterior region of the left temporal lobe, Saumier
and Chertkow, 2002, though the specific regions
involved in semantic memory retrieval depend on
whether sensorimotor or abstract amodal features
are accessed, Reilly et al., 2016).1

Characterizing the emergence of LTM is of
course highly complex—Ginzburg and Lücking
(2022) offered one simplified rule concerning
episodic memory, but said nothing about entity
and semantic memory. We refine very slightly their
rule concerning episodic memory and offer two
very simplified rules concerning entity and seman-
tic memory. Events undergo appraisal which leads
to both updates in the current emotional makeup
of the cognitive state (both in the private and in
the public parts) and to creating episodic indices
in the hippocampus, which are in effect vertices in
a network connecting to percepts of events stored
neocortically. We assume that such indices are cre-
ated for events with positive pleasantness above a
threshold or negative pleasantness above a larger
threshold—which yields a bias for long-term mem-
ory of enjoyable events or of highly unpleasant
ones. The rule in (7) creates a fresh index and asso-
ciates it with the current event in working memory,
originating either in Pending or in vis-sit:

(7)


pre :

e=MaxPending ∨ vis-sit : RecType
c1 : Private.Mood.pleasant.affect.pve ≥ θ1

∨ Private.Mood.pleasant.affect.nve ≥ θ2


effects :

n = card(HC-Indices)+1 : N

HC-indices := HC-Indices ∪
〈

n,pre.e
〉


Although Tulving (1972) suggested that seman-

tic memory was in some sense prior to episodic,
recently it has been common to view both entity
and semantic memory as emerging from decontex-
tualized episodic traces (and existing in parallel)
(Greenberg and Verfaellie, 2010).

We define an individual-oriented subpart of a
record type as in (8a) and exemplify it as in (8b):

(8) a. Assume l1 is a label of the record type i
and i v

[
l1 : Ind

]
and for no other label li in

1From a formal point of view one might say that an entity–
oriented semantics has already been proposed in Irene Heim’s
File-Change Semantics (Heim, 1982), though in that case the
episodes are represented within each individual file, which
emerges with the utterance of an indefinite. So there is no
dissociation and of course no means to deal with forgetting or
associative memory. The same is true for related mental files
approaches (e.g. Maier, 2016).
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Visuo-spatial sketchpad
foa : Ind ∨ Rec
addr : Ind
utt-time : Time
c-utt : addressed(addr,utt-time)


Phonological loop[

Pending : LocProp
]

Episodic buffer

spkr : Ind
u-t : Time
c-u : speaking(spkr,u-t)
MaxQUD : Question
LatestMove : LocProp
TopicalFact : Prop



Central executive[
Agenda : topos

]
LTM :


Episodic :

[
Conversational : List(LDGBType)

]
HC-indices : Set(

〈
n : N, e : RecType

〉
)

Entities : Set(RecType)
SemMem : Set(Prop)


activation

rule

activation rule

deactivation
rule

Figure 1: Fusing M-WM and DGB, and adding LTM.

i is it the case that i v
[
li : Ind

]
and assume

r is a record type such that for some j
r = i∧. j (‘merge’), then i is an individual-
oriented subpart of r.

b. i =


x : Ind
C : faceshape
c1 : C(x)
cname : Name(Emmo,x)


,

r =


x : Ind
C : faceshape
c1 : C(x)
cname : Name(Emmo,x)
y : Ind
c2 : Hammer(y)
t : Time
c3 : Hold(x,y,t)


We will assume that entities emerge in LTM as

individual-oriented parts of episodes from episodic
memory:

(9) Entity memory update: If 〈n, r〉 ∈ HC-
Indices and i is an individual-oriented part
of r, then Entities := Entities ∪{i}

The principle we sketch for the emergence of
semantic memory involves a subcase of the FACTS
update rule (5b) above. We assume that assertions
communicating stative information update seman-
tic memory. This is of course quite crude, but
presumably a more refined typing of propositions
can offer a reasonable starting point for such a pro-
cedure.

(10) Semantic memory update: If p ∈
FACTS and p : StativeProposition, then
SemMem := SemMem ∪{p}

We mention one additional principle, which we
will not attempt to formalize in the current setup,

but which is (partially) formalizable in the neural
setup of section 4. It is intuitively correct for inner
dialogue, and we think reasonably extensible to
interactive dialogue:

(11) Associative topics: If q is a question
whose similarity to MaxQUD ≥ θ, Ask(q)
is licensed as the LatestMove

3.2 Initial Account
We return to our initial example repeated here as
(12):

(12) Dialogue 1: Neighbour: This is Swann.
Me: Nice to meet you.

Given the tools we have, we can explain the
following: the coherence of my response to the
neighbour’s introduction (on the basis of the In-
terlocutor introduction rule, (5a)); the update of
entities with the individual Swann (as an update
of entity memory, see (9)), the update of seman-
tic memory with Swann’s name (as an update of
semantic memory, see (10)).

For the second dialogue repeated here as (13):

(13) Dialogue 2: (I see Chloé) Me: How is
um (pause, frowns) your sister? Chloé:
Swann? Me: Yes.

we can explain how the self-repair question intro-
duced by a filled pause licences a frown (see (6));
we can explain the coherence of Chloé’s confirma-
tion request (see (5.c)). On the other hand, we do
not have a means of explaining my inability to
recall Swann’s name (since it is in my semantic
memory), nor the restorative effect of Chloé’s
utterance on the availability of Swann’s name.
Nor do we have a means of explaining why I
think of Swann when I see Chloé; my asking
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about Swann could be explained if we had a means
of formalizing our rule of associative topics, as
a question similar to asking how Chloé is. We
suggest that dealing with these unresolved issues
requires a brain-oriented semantics, to which we
now turn.

4 Adding a Neural Level

4.1 The Semantic Pointer Architecture

We draw on the Semantic Pointer Architecture
(SPA) approach to cognition (Eliasmith, 2013). The
idea in a nutshell is the following: an input current
is nonlinearly encoded within a population of neu-
rons according to each neuron’s tuning curve and
spiking pattern. The encoded input can either be
reconstructed by other populations of neurons by
weighted linear decoding (the pair of encoding and
decoding defines a neural representation), or trans-
formed (by another weighted linear decoding). We
employ vectors as a means for representing sym-
bols, dubbing them semantic pointers (SPs), since
we construe them as compressed representations
that carry partial semantic content. Certain trans-
formations can be defined on the class of SPs. One
of the most important transformations is circular
convolution (Plate, 1991), which binds two or more
vectors into an output vector v without increasing
dimensionality but ensuring also that the input vec-
tors can be unbound or decoded from v, albeit with
some noise.2,3

If vectors d and e are bound into p, p = d~ e,
“~” being circular convolution, then d can be ap-
proximately recovered from p by binding p with
the inverse of e: d ≈ p~ e′ (e′ being the inverse
of e). Encoding, decoding, and transforming are

2Vector Symbolic Architectures (VSA; Gayler, 2004) de-
fine symbolic operations on high-dimensional numerical vec-
tors. See Schlegel et al. (2022) for a very useful survey of
Vector Symbolic Architectures.

3Circular convolution C = A ~ B is defined as in (i) in
a space of dimension D, whereas the inverse of a vector is
defined as in (ii), and we use the notation B′ for B−1

(i) Circular convolution

cj =

D−1∑
k=0

bkaj−k(modD)

for j ∈ {0, . . . , D − 1}

(ii) Inverse for circular convolution
a−1
j = aD−j(modD)

where j ∈ {0, . . . , D − 1}

In other words: 〈a0, a1, . . . , aD−1〉−1 =
〈a0, aD−1, . . . , a1〉

dynamic processes in time and are implemented us-
ing the software tool Nengo (Bekolay et al., 2014),
which also allows for “biological compilation” in
terms of neural simulations.4

The SPA has successfully been applied to a num-
ber of cognitive tasks, including the representation
of concepts (Blouw et al., 2016), memory (Gos-
mann and Eliasmith, 2021),and emotion (Thagard
et al., 2023), and underlies the world’s largest func-
tional brain model to date (Eliasmith et al., 2012).

4.2 SPA and Symbolic Representation
A key feature of the SPA is that it enables a system-
atic correspondence of symbolic and neural content
in a way that meets Jackendoff’s challenges for
cognitive neuroscience (Jackendoff, 2002; Gayler,
2004). In recent work Larsson et al. (2023) show
how to map TTR entities into SPA ones, offering
a mapping that covers basic types, perceptual and
cache-based judgements, singleton types, record
types, meet types and merging of record types,
ptypes, and subtyping.

4.3 Completing the Account
We employ the SPA to propose a simple model that
completes our account of the simple name forget-
ting episode (1), and (12) and (13), respectively.5

Adding a neural level allows us to offer rudimen-
tary accounts of desiderata (i) to (iv) from section 1,
in particular a gradual emergence of forgetting. The
current model is simplified as a brain model in a
variety of aspects: no WM (so no short-term learn-
ing); consolidation is assumed to happen; there
is no coupling between dialogue cognitive states;
perfect perception/communication is assumed—no
processing of vision or language is integrated into
the account.

The model represents certain perceptual input
(visual and linguistic) and resultant memory traces
as semantic pointers. It models recollection of an
entity’s property P (e.g., x’s name) as (i) finding
the vector most similar to the current percept and
(ii) unbinding the entity bound to P. If recollection
is successful, (a) the entity found is updated with
the information originating with the current percept
and (b) a smile is triggered,6 otherwise a frown is

4https://www.nengo.ai/
5The code for the model is available here: https://

github.com/aluecking/Swanns-Name. Note that
you might obtain numbers that differ from those given in
this paper due to the random initialization of vectors.

6In a more detailed model, the motor neurons responsi-
ble for the action sequence responsible for a smile would be

https://www.nengo.ai/
https://github.com/aluecking/Swanns-Name
https://github.com/aluecking/Swanns-Name
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triggered.
Initially there is input about three girls, Swann

(‘girl_52’), Anais (‘girl_53’), and Chloé (‘girl_54’).
Swann and Anais are differentiated in terms of
their names and food preferences and have the
same hair colour and are neighbours (of the ob-
server), whereas Chloé has Swann’s properties bun-
dled with being her sister:7

(14) a. GIRL52 = NAME ~ SWANN + REL
~ NEIGHBOUR + HAIR ~ BROWN +
FRUIT ~ APPLE

b. GIRL53 = NAME ~ ANAIS + REL ~
NEIGHBOUR + HAIR ~ BROWN +
FRUIT ~ BANANA

c. GIRL54 = GIRL52 + SISTER_OF +
NAME ~ CHLOE

At this point, the state views Chloé and Swann
as similar (their dot product is 0.59), and recalls
Swann’s name (the vector associated with the name
SWANN is most similar to the decoded vector with
a dot product of 0.38), as indicated in (15) for de-
coding NAME and in Fig. 2, where the most similar
items when unbinding all its properties are shown:

(15) The name “Swann” is recalled:

NAME

SW
ANN
CHLO

E
ANAISREL

NEIG
HBO

UR
HAIR

BROWN

SIS
TE

R_O
F
FR

UIT
APP

LE

BANANA

GIRL_5
2

GIRL_5
3

GIRL_5
4

Vocabulary Items

0.1

0.0

0.1

0.2

0.3

0.4

Do
t P

ro
du

ct
 S

im
ila

rit
y

Similarities for decoding "NAME"

Subsequently there is input about Swann solely
with respect to her hair and being a neighbour:

(16) REL ~ NEIGHBOUR + HAIR ~
BROWN + FRUIT ~ APPLE

This has the effect that the entity representing
Swann has the properties associated with her hair
and neighbourliness boosted. At this point, the
state does not recall Swann’s name (its similarity is
below the threshold), as shown in (17) for NAME
and in Fig. 3 for all properties.

triggered.
7All vectors are normalized, i.e., of unit length.

(17) The name “Anais” would be wrongly re-
called, although very weakly (it is below
the forgetting threshold of 0.3):
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In terms of the sources of forgetting collected at
the end of subsection 2.3 we can think of this as
modeling forgetting by weight decay due to modi-
fication during activation.

Subsequently there is visual input about Chloé;
Chloé and Swann remain similar, in other words
Swann is associated (triggered as a possible topic)
Finally, there is verbal input of Swann’s name,
which leads to it being recalled again as her name –
see (18) and Fig. 4.

(18) The name “Swann” is regained:
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5 Conclusions and Future Work

In this paper we have argued with reference to sev-
eral concrete examples that dialogical semantics
needs to be brain-oriented to account for a num-
ber of fundamental properties of cognition includ-
ing forgetting and memory associativity. We have
offered an initial synthesis of dialogue semantics
where cognitive states are expressed in terms of ex-
ternal entities, though formulated with attention to
the brain’s memory structure, with a vector-based
semantics that can be compiled into neurons and
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Figure 2: Unbinding the properties of the initial semantic pointer girl_52
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Figure 3: Unbinding the properties of girl_52 after updating REL and HAIR, but not NAME: the name ‘Swann’
counts as forgotten since it is not the most similar item any more and is below a similarity score of 0.3
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Figure 4: Unbinding the properties of girl_52 after updating NAME: the name is regained

neuron networks. The explanation we offer for
the example we deal with in detail shows the need
for a model that operates at various distinct levels,
both the external and the neural. It is important
to emphasize that such a model will clearly not
be modular. For instance, our rule concerning as-
sociative topics makes reference to both a level
of external content and to the neural level—more
precisely the level where associations need to be
computed, but the neural level is probably the more
plausible level for this.

The neural model utilized here is very simpli-
fied, as we have pointed out, bypassing perception
and working memory, in contrast to various exist-
ing work using the SPA architecture—see Borst
et al. (2023) for a model demonstrating biologi-
cal plausibility through the use of spiking neurons,
and accounting for both human behavior and neu-

roimaging data across a whole task. In future work
we hope to incorporate utterance processing and
perception; an initial task being to provide neural-
ized versions of conversational rules.
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