
Proceedings of the 28th Workshop on the Semantics and Pragmatics of Dialogue, September, 11–12, 2024,
Trento, Italy.

Annotation Needs for Referring Expressions in Pair-Programming Dialogue

Cecilia Domingo, Paul Piwek, Michel Wermelinger
The Open University

Milton Keynes, England
cecilia.domingo-merino@open.ac.uk

paul.piwek@open.ac.uk
michel.wermelinger@open.ac.uk

Svetlana Stoyanchev
Toshiba Europe Ltd.
Cambridge, England

svetlana.stoyanchev@toshiba.eu

Abstract

Referring expressions are a widely researched
area in linguistics, with some work also on di-
alogue. As dialogue technology evolves and
language models increasingly incorporate pro-
gramming languages, pair-programming dia-
logues become a promising area of research.
We recorded 24 dialogues between adult learn-
ers to analyse how they refer to the code that
they create through the task. These dialogues
present some challenges (and interesting av-
enues for research) for annotation and analy-
sis, due to several factors: high multimodality,
mix of abstract and specific entities in the same
domain, variability in naming practices, and
referents being sometimes located in the future
or remaining hypothetical.

1 Introduction

Referring phenomena have long been studied in
computational linguistics. While much focus was
placed on monologic text, a lot of research has
also been carried out in dialogue, though often in
simulated settings. In our work we gather data on
a real educational task solved by learners through
dialogue: Python programming problems solved
via pair-programming1. Through our data we hope
to shed light on how speakers discuss code entities,
in a domain whose importance is increasing in NLP
as models become better at processing code along
with natural language (Wan et al., 2024).

2 Remote pair-programming dialogues

We focus our research in the domain of pair pro-
gramming, due to its pedagogical value (Hanks
et al., 2011) and relevance in computational linguis-
tics as language models develop increasing code
capabilities (Wan et al., 2024). Even though this
domain has been widely researched, most studies

1Pair programming is a collaboration technique where two
people work together, simultaneously, on the same piece of
code.

focus on the code produced rather than the dia-
logue, and thus little dialogue data is available. We
recorded 24 pair-programming sessions in a remote
setting (5 of them, the pilot, with simulated remote-
ness, i.e., participants in adjoining rooms). Par-
ticipants communicated via voice call and worked
together on beginner-level Python tasks using Vi-
sual Studio Code with the Live Share plugin, which
allows simultaneous editing of the code file, with
each user connected having their own cursor. The
sessions were around 30 minutes each. The par-
ticipants were 45 students (from Bachelor to PhD)
and 2 staff, ages ranging from 23 to 70, and a gen-
der split of 12 female/35 male. We recorded the
dialogues, as well as the code produced at each
moment and participants’ mouse and keyboard ac-
tivity; we also recorded the screen for additional
context.

3 Annotation needs

Several annotation schemes exist for referring ex-
pressions, most famously Ontonotes (Weischedel
et al., 2013). This scheme’s main appeal is its sim-
plicity, which leads to high inter-annotator agree-
ment, but it is also its main point of criticism, as
it fails to capture phenomena that may be impor-
tant (Zeldes, 2022). Other schemes (Poesio et al.,
2024) tackle some of these limitations, offering
useful descriptions of complex types of referring
expressions. Such extensive analysis of anaphora
characteristics might not be advisable in our do-
main, where not even a more basic one has been
carried out yet. Moreover, efforts in linguistic anal-
ysis might be best spent on other aspects where our
domain is more unique, such as the characteristics
of the names given to code elements by coders, and
how these evolve through dialogue.

1



Proceedings of the 28th Workshop on the Semantics and Pragmatics of Dialogue, September, 11–12, 2024,
Trento, Italy.

3.1 Multimodality

Remote dialogues may normally be an activity
that’s primarily linguistic (Clark, 2005); however,
the addition of the co-creation of code turns it into
a highly multimodal activity. Other schemes’ fo-
cus on discourse makes them unfit for our setting,
where the main goal is linking references and ref-
erents across modalities. As the code becomes
arguably as important as the discourse, we need
to annotate both anaphora and deictic references,
linking together discourse elements through coref-
erence chains, but also linking those chains to en-
tities in code files. In pair-programming dialogue,
referents and referring acts will not only be found
within the discourse; speakers will also refer to en-
tities in the code that they are creating, and may use
the mouse and keyboard to bring them into focus.

Some studies have been carried out on the use of
pointing gestures for referring and show that they
play an important role: e.g., gestures can replace
locative expressions (Kehler, 2000), or they can
contribute to mutual disambiguation, i.e., the ambi-
guity in discourse can be cleared with the informa-
tion from other modalities and vice versa (Kaiser
et al., 2003). In some settings, pointing gestures
accompanied only few utterances (e.g., 16% of ut-
terances (Sluis et al., 2008), though this number
is not insignificant). However, in our preliminary
analysis of publicly available data2 51% of utter-
ances that mentioned code (which were 55% of the
total) featured the mouse pointer or keyboard play-
ing a role in the referring expression — as far as the
video data allowed us to see. It is also important
to note that different speakers show different strate-
gies in their use of pointing (Piwek, 2007); such
variability might also be observable in the use of
the mouse and keyboard as pointing devices. More-
over, the literature has mostly focused on hand
pointing — we might expect different behaviours
regarding other forms of pointing (e.g., with the
cursor).

3.2 Abstract and unrealised entities

Several studies on referring expressions have been
carried out in highly controlled settings where the
entities mentioned and their features are previously
known to the researchers who placed them in the
setting (Koolen, 2013; Rubio-Fernández, 2024).
In our setting, most entities do not exist until the
speakers create them into the code — they begin

2http://www.pairwith.us/tv

with a blank canvas. As the entities of the dialogue
are created through it and not known beforehand,
we need to annotate their characteristics post fac-
tum, distinguishing between abstract discussions
of code and mentions to specific entities in the
speaker’s code files. See the example utterances
below (from different dialogues) where we contrast
a reference to an array as an abstract programming
entity with an array as a specific entity present in
the code:

• Abstract array: I can’t remember how you
do an array.

• Array in the code: I think that, that does need
to be kind of an array so that I think that does
need to be in square brackets.

Yet another peculiarity of the pair-programming
task is that, as the speakers must discuss the prob-
lem to reach an agreement on how to solve it, of-
ten entities may be mentioned only to later be dis-
carded as the discussion brings forth better solu-
tions. In some cases the entity might be preserved,
but the speakers may still discuss it at length be-
fore finally implementing it, thus speaking about a
concrete but unrealised entity. In the excerpt below,
speakers A and B discuss a string that they are go-
ing to type, and they give it a name, but the string
does not become realised in the code until turn 5,
when they change the name to ‘text’:

1. A: Can we, uh, I don’t know, define a, a string,
maybe the, the so-cool string.

2. B: Uh... Yeah, that seems like a good place to
start. And then we can kind of maybe try and
split it up into the.

3. A: Yeah. Yeah. So should I start defining
these, this string?

4. B: Yeah, sure. Sounds good.

5. A: Um. Uh, how should I, uh, call it? Uh...
Just. Um, sentence. [B types ‘text’] Oh, text.
Yeah, text.

4 Conclusions

Pair-programming dialogues possess several char-
acteristics that set them apart from other dialogue
domains studied so far, and thus require custom
tools for their annotation and analysis. It is a highly
multimodal setting that requires linking discourse

2



Proceedings of the 28th Workshop on the Semantics and Pragmatics of Dialogue, September, 11–12, 2024,
Trento, Italy.

to another modality (code) and taking note of ac-
companying gestures in a less-studied form (point-
ing using the mouse and keyboard). As it is a
dynamic environment (Kumar et al., 2022) where
entities are created through the dialogue, we need
to characterise those entities post factum, observing
as well whether they can be currently linked to the
code, refer to future code, or remain hypothetical.

Acknowledgments

This work has financial support from EPSRC Train-
ing Grant DTP 2020-2021 Open University and
Toshiba Europe Limited. This research project
was reviewed by, and received a favourable opin-
ion from, our university’s Human Research Ethics
Committee.

References
Herbert H. Clark. 2005. Using language, 6. print edition.

Cambridge University Press.

Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie
Murphy, and Carol Zander. 2011. Pair programming
in education: a literature review. Computer Science
Education, 21(2):135–173.

Ed Kaiser, Alex Olwal, David McGee, Hrvoje Benko,
Andrea Corradini, Xiaoguang Li, Phil Cohen, and
Steven Feiner. 2003. Mutual dissambiguation of 3d
multimodal interaction in augmented and virtual re-
ality. In Proceedings of The Fifth International Con-
ference on Multimodal Interfaces (ICMI ’03). Van-
couver, BC. Canada, pages 12–19.

Andrew Kehler. 2000. Cognitive status and form of
reference in multimodal human-computer interaction.
In Proceedings of the seventeenth national confer-
ence on artificial intelligence, pages 685–690. The
AAAI Press, Menlo Park, California.

Ruud Martinus Franciscus Koolen. 2013. Need I say
more? On overspecification in definite referenc. Un-
published PhD Thesis, OCLC: 856996240.

Abhinav Kumar, Barbara Di Eugenio, Abari Bhat-
tacharya, Jillian Aurisano, and Andrew Johnson.
2022. Reference resolution and context change in
multimodal situated dialogue for exploring data visu-
alizations. Preprint, arxiv:2209.02215 [cs].

Paul Piwek. 2007. Modality choice for generation of re-
ferring acts: Pointing versus describing. In Proceed-
ings of Workshop on Multimodal Output Generation
(MOG 2007), pages 129–139.

Massimo Poesio, Maris Camilleri, Paloma Car-
retero Garcia, Juntao Yu, and Mark-Christoph Müller.
2024. The ARRAU 3.0 corpus. In Proceedings of
the 5th Workshop on Computational Approaches to

Discourse (CODI 2024), pages 127–138. Association
for Computational Linguistics.

Paula Rubio-Fernández. 2024. Referential efficiency as
speaker-listener coordination. 2024 CORE Project
Workshop.

Ielka van der Sluis, Paul Piwek, Albert Gatt, and Adrian
Bangerter. 2008. Towards a balanced corpus of mul-
timodal referring expressions in dialogue. In Pro-
ceedings of the Symposium on Multimodal Output
Generation.

Yao Wan, Zhangqian Bi, Yang He, Jianguo Zhang,
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
and Philip Yu. 2024. Deep learning for code in-
telligence: Survey, benchmark and toolkit. ACM
Computing Surveys, pages 1–39.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. OntoNotes release 5.0.

Amir Zeldes. 2022. Opinion piece: Can we fix the scope
for coreference?: Problems and solutions for bench-
marks beyond OntoNotes. Dialogue & Discourse,
13(1):41–62.

3

https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1080/08993408.2011.579808
https://www.microsoft.com/en-us/research/publication/mutual-dissambiguation-3d-multimodal-interaction-augmented-virtual-reality/
https://www.microsoft.com/en-us/research/publication/mutual-dissambiguation-3d-multimodal-interaction-augmented-virtual-reality/
https://www.microsoft.com/en-us/research/publication/mutual-dissambiguation-3d-multimodal-interaction-augmented-virtual-reality/
https://arxiv.org/abs/2209.02215 [cs]
https://arxiv.org/abs/2209.02215 [cs]
https://arxiv.org/abs/2209.02215 [cs]
https://aclanthology.org/2024.codi-1.12
https://www.upf.edu/web/glif/2024-core-workshop
https://www.upf.edu/web/glif/2024-core-workshop
https://api.semanticscholar.org/CorpusID:9616900
https://api.semanticscholar.org/CorpusID:9616900
https://doi.org/10.1145/3664597
https://doi.org/10.1145/3664597
https://doi.org/10.35111/XMHB-2B84
https://doi.org/10.5210/dad.2022.102
https://doi.org/10.5210/dad.2022.102
https://doi.org/10.5210/dad.2022.102

	Introduction
	Remote pair-programming dialogues
	Annotation needs
	Multimodality
	Abstract and unrealised entities

	Conclusions

