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Abstract

Spoken dialogue systems enable people to inter-
act with machines using speech, many of which
involve the use of automatic speech recognition
and language understanding in order to react
to and determine a decision about how to re-
spond. Unlike humans, many systems operate
on complete sentences, waiting for a length
of silence before attempting to process the in-
put. In contrast, incremental spoken dialogue
systems enable faster and more natural interac-
tion by operating at a more fine-grained level.
In this work, we evaluate six speech recogniz-
ers and RASA for language understanding in
an incremental spoken dialogue system. The
results suggest that, for speech recognition, on-
line/cloud models can be slower and less stable
than local models and we show that incremen-
tal language understanding can enable a system
to make decisions earlier than waiting for the
end of the utterance.

1 Introduction

Interacting with technology using a spoken dia-
logue system (SDS) has become more prevalent
with applications such as voice search, dictation,
and virtual assistants (Yu and Deng, 2016). A fun-
damental step in how these systems process input,
whether implemented in a chatbot, on a website, or
on a robot, is to understand what is uttered by the
user and produce some kind of action, often by re-
sponding using speech back to the user. This is usu-
ally performed by first transcribing what the user
says using Automatic Speech Recognition (ASR),
followed by using a model of Natural Language
Understanding (NLU) to map from the ASR’s tran-
script to a computable abstraction, often a semantic
frame. Existing models for NLU, including large
language models, are becoming more common-
place, but most have an important drawback: they
operate on complete sentences.

Incremental systems, in contrast, operate at more
fine-grained levels of information, usually at the

word-level instead of the sentence-level, and be-
gin to process the input as soon as it is received.
Incremental systems have been shown to offer a
more natural interaction (Aist et al., 2007; Edlund
et al., 2008) likely due to the fact that humans also
produce and understand language incrementally
(Tanenhaus and Spivey-Knowlton, 1995). How-
ever, most existing ASR and NLU models are either
non-incremental or have not been evaluated incre-
mentally. With incremental systems offering more
natural interactions, it is crucial to evaluate and
understand how ASR and NLU perform in an incre-
mental setting.

In the spirit of prior work, which evaluated sev-
eral existing ASR models and their relationship to
NLU to inform the research community (Morbini
et al., 2013), in this work, we evaluate six ASR

models (two online/cloud and four local). How-
ever, in this work, we experiment in an incremental
SDS setting. We evaluate on two English datasets
using incremental metrics proposed from Baumann
et al. (2009, 2016), as well as propose a new met-
ric Revokes per Second to observe how frequently
the predictions of an ASR model change (section
3.1.1). Moreover, we incrementalize a recent ver-
sion of RASA, a framework for NLU and building
conversational agents, and evaluate its incremental
performance on the SNIPS and SLURP datasets
(Coucke et al., 2018; Bastianelli et al., 2020a) in
conjunction with an ASR model.

Results show that cloud ASRs, although being
some of the most accurate, can have a higher la-
tency and change predictions more frequently than
the local ASRs. For incremental NLU, results show
that even without a perfect transcript (i.e. a tran-
script generated by an ASR instead of the ground-
truth), a system could be ready to take an action
up to six words on average before the end of an
utterance. The results provide insights when con-
sidering which ASR to use and for designing SDSs
that are more natural and responsive in their in-



Proceedings of the 27th Workshop on the Semantics and Pragmatics of Dialogue, August, 16–17, 2023,
Maribor.

teractions. All of the models are implemented as
modules in the Retico framework (Michael, 2020)
for ease of use in incremental systems.

2 Background & Related Work

Incremental ASR Many ASR models operate in-
crementally in that they produce word or sub-word
outputs as the recognition unfolds (Morbini et al.,
2013). This ability to function incrementally is an
important requirement for spoken dialogue systems
(SDS), especially ones that are multimodal or part
of a robot platform because there is a high expec-
tation of timely interaction from human dialogue
partners (Kennington et al., 2020). Although ASR

can function incrementally, most ASR models use
the word-error-rate (WER) metric for evaluation,
even in conversational settings (Morris et al., 2004;
Morbini et al., 2013; Georgila et al., 2020). How-
ever, WER solely captures the end performance and
does not take into account incremental performance
and speed. Morbini et al. (2013) mentions the im-
portance of incremental ASR stating, “incremental
results allow the system to react while the user
is still speaking”, yet evaluates ASR performance
using only WER. We build on this prior work by us-
ing WER as well as metrics to evaluate incremental
performance.

Baumann et al. (2009, 2016) proposed metrics
for evaluation of incremental performance such
as Edit Overhead, Word First Correct Response,
Disfluency Gain, and Word Survival Rate. All of
the metrics, including WER, can be classified into
one of the following three general areas of interest:
overall accuracy, stability (which can be thought
of as measuring the incremental performance), and
speed. However, these metrics focus on discrete
word-level output and not the relationship of be-
tween incremental performance and speed. To
capture the relationship between incremental per-
formance and speed, we propose to measure the
number of Revokes per Second (introduced in Sec-
tion 3.1.1).

Incremental NLU NLU maps words onto a mean-
ing representation, such as a semantic frame (see
example in Section 3.2). Among many methods
for doing this mapping, in this paper, we focus
on RASA (Bocklisch et al., 2017) which is open
source and has been shown to work well for NLU

(Liu et al., 2019). RASA was made to work incre-
mentally in Rafla and Kennington (2019), but sub-
sequent updates to RASA have left the incremental

version obsolete and the original evaluation did not
include ASR as the evaluation was performed using
only text data (i.e. ground-truth transcriptions). In
this work, we incrementalize a recent version of
RASA that will be more maintainable in the future
and we evaluate performance using incrementally
produced transcriptions from an ASR as well as the
ground-truth transcriptions.

3 Methods

Figure 1: An example of adds and revokes. The word
should is added, then revoked and replaced by showed.
The diamonds represent the time when the predictions
are made.

The Incremental Unit Framwework We adopt
the Incremental Unit framework from Schlangen
and Skantze (2009) for its flexible design. The
framework is built around incremental units (IU),
discrete pieces of information (e.g., a chunk of
audio, a word, an image), that are produced by
specific modules. These modules process IUs as
input and can pass IUs that they produce to other
modules. For example, a microphone module can
output chunks of audio as IUs that are passed to an
ASR module that outputs individual words as IUs
which can in turn be passed on to an NLU module,
and so on.

The IU framework has provisions for handling
cases where a module’s output was found to be
in error, given new information. To handle these
cases, there are three operations for IUs: add (to
mark an IU to be added to the output), revoke (to
mark an IU to be removed from the output), and
commit (to mark that an IU will not longer change).
A perfect ASR would only add new words to the
growing list of previously recognized words. But
as most ASRs have errors—particularly when they
work incrementally—the revoke operation allows
the ASR module to remove an erroneous IU and
replace it (i.e., through another add operation) in
the recognized output. Importantly, the revoke
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operation propagates to downstream modules that
may have acted on prior input, signalling the error.
An example of incremental add and revoke for
ASR is shown in Figure 1. We use Retico, a Python
implementation of the IU framework, to implement
and evaluate ASR and NLU models (Michael, 2020).

3.1 ASR

We use six different, readily available ASR models:
2 cloud-based and 4 local, chosen due to their re-
spective results and accessibility. The cloud-based
models are Google Cloud’s Speech-to-Text and Mi-
crosoft Azure’s Speech. We use Wav2Vec2 (W2V),
DeepSpeech (DS), PocketSpinx (PS), and Vosk
(Baevski et al., 2020; Hannun et al., 2014; Huggins-
Daines et al., 2006).

Due to the limited amount of information given
about the online ASR models, we can not go into
depth about the architecture and training behind
these models. The local models are summarized in
Table 1 and described below.

Wav2Vec (W2V): We use Meta’s Wav2Vec
model from a checkpoint provided by Hugging-
Face where the model has been pre-trained and
fine-turned on 960 hours of Librispeech (Baevski
et al., 2020). This architecture is unique in that it
is pre-trained on hours of unlabeled raw audio data.
While other models first convert the audio into a
spectrogram, Wav2Vec operates directly on audio
data.1

DeepSpeech (DS): Mozilla’s DeepSpeech
model, is based on work done by Hannun et al.
(2014). This architecture uses Recurrent Neu-
ral Networks that operate on spectrograms of the
audio to make predictions. We use the 0.9.3
model and scorer for predictions. This model
was trained using a wider variety of data from
Fisher, LibriSpeech, Switchboard, Common Voice
English, and approximately 1,700 hours of tran-
scribed WAMU (NPR) radio shows explicitly li-
censed to them to be used as training corpora.2

PocketSphinx (PS): One of the lighter ASRs we
tested is CMU’s PocketSphinx (Huggins-Daines
et al., 2006). PS is a light-weight ASR that is a
part of the open source speech recognition tool
kit called the CMUSphinx Project. This model
was trained on 1,600 utterances from the RM-1
speaker-independent training corpus. Unlike the
previously mentioned models, PS does not use neu-

1https://huggingface.co/facebook/wav2vec2-base-960h
2https://deepspeech.readthedocs.io/en/r0.9/

Figure 2: In the Sliding Window method, the ASR model
makes predictions on partially overlapping portions of
audio. Dictionaries are used to join the incoming pre-
dictions together.

ral networks and is instead based on traditional
methods of speech recognition by using hidden
Markov models, language models, and phonetic
dictionaries.3

Vosk: Alpha Cephei’s Vosk (with the vosk-
model-en-us-0.22 model) is built on top of Kaldi
(Povey et al., 2011), and like PocketSphinx, uses an
acoustic model, language model, and phonetic dic-
tionary. Vosk uses a neural network for the acoustic
part of the model.4

3.1.1 ASR Metrics
As mentioned, all previously proposed metrics for
evaluating incremental ASR can be divided into
three broad categories: overall accuracy (using
WER), speed, and stability. In this section, we de-
scribe the specific metrics used and introduce our
new metric which combines these last two cate-
gories of speed and stability into a single metric.

Overall Accuracy: WER Although there are dif-
ferent metrics to measure overall accuracy as com-
pared in (Morris et al., 2004), we only use the most
common metric, Word Error Rate (WER), which
is defined by the the number of edits, substitutions
(S), insertions(I), and deletions (D), divided by the
total number of words (N): WER = S+I+D

N .

Predictive Speed: Latency In order to measure
the general speed of an ASR model, we measure the
time it takes from the time the ASR model gets the

3https://github.com/cmusphinx/pocketsphinx-python
4https://alphacephei.com/vosk/
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Name (abbreviation) Model Training Data
Wav2Vec (W2V) wav2vec2-base-960h LibriSpeech
DeepSpeech (DS) 0.9.3 Fisher, LibriSpeech, Switchboard, Common Voice English
PocketSphinx (PS) N/A 1600 utterances from the RM-1
Vosk en-us-0.22 N/A

Table 1: Local ASR models along with their used models and training data if available.

Figure 3: In this method, the incremental audio is con-
catenated together, and a prediction is made on the entire
audio that has been given up to that point.

audio until the prediction is made. We then take
this time and divide by the number of words in that
particular prediction. With this, we define latency
as the average amount of time per word it takes an
ASR model to make a prediction: LAT = T ime

N ,
where time is measured in seconds and N is the
total number words in a given prediction.

Stability: Edit Overhead For measuring stabil-
ity, we measure the edit overhead (EO). EO is the
total number of revokes (R) divided by the total
number of edits, or additions (A) and revokes (R),
that the ASR model makes. EO = R

A+R .

Revokes per Second Our proposed and final met-
ric is the number of Revokes per Second (RPS). We
propose this metric as a way to capture the relation-
ship between both speed and stability in an inter-
pretable fashion by measuring how often an ASR

changes its predictions. In an incremental SDS set-
ting, this is the average number IUs that are labeled
as type revoke per second. In an online meeting
where real-time subtitles are available, this would
represent the number of times you could expect a
word to change per second in the transcript.

In such settings, a high RPS in a model’s in-

cremental predictions could result in confusion in
downstream modules in an SDS setting (such the
NLU module) or in humans trying to follow an on-
line meeting using the real-time transcript.

We also look at the inverse Seconds per Revoke
(SPR) as a simple adjustment to this metric to see
how many seconds will pass by before one can
expect to see a revoke. This SPR value is useful
in interpretations when the RPS is low. Taken to-
gether, the formulas for these metric are as follows:
RPS = R

Time(s) and SPR = T ime(s)
R = 1

RPS

Combining Sub-word Output Both Google and
Azure offer incremental ASR results. For these
two ASRs, the audio files are sent to the cloud ser-
vices in chunks, and the service returns a prediction
with other meta-information. Google and Azure
ASRs handle the concatenation, combining the pre-
dictions into a string that grows as the utterance
unfolds. For local ASR models, we have control
over how the predictions are combined and pro-
cessed. We apply and compare two methods in this
evaluation: Sliding Window and Concatenation.5

One limitation of many ASR models is the
amount of audio they can process. For longer au-
dio files (> 30 seconds), ASR models will start slow
down and even crash. For this reason, we exper-
iment with a sliding window of audio. For this
Sliding Window method, we pass the audio from
the file in chunks that are a bit longer than one
second. These are then concatenated together as
an audio buffer and given to an ASR model until it
produces a prediction of at least 5 words or when
it is indicated that it is the end of that particular
audio file. Once a prediction of 5 words is made
we remove the first 35% of the audio buffer. This
results in a series of predictions on segments of
audio. When a prediction is received, it is joined
together with previous predictions. Due to overlap
in incoming predictions, the way that the predic-
tions are joined together is non-trivial. We used
string filtering and matching functionalities to fil-

5We used the same PC with a GTX1080TI GPU for the
local models.
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ter out noise and join predictions appropriately by
finding the overlapping string using dictionaries
from WordNet and NLTK (Miller, 1995; Bird et al.,
2009).

In the audio datasets we use, generally the files
are short. Therefore, as a comparison we also im-
plement a more simple Concatenation Method. For
the Concatenation method, we present the audio
in chunks into an audio buffer in the same manner
as the Sliding Window method, except the audio
buffer is a concatenation of all the audio (i.e., no au-
dio ever gets removed from the buffer). Essentially,
with this method, the ASR model makes a predic-
tion from the very beginning of the file to the most
recent audio given to the buffer. This is computa-
tionally more expensive and takes more memory
because the ASR model has to make predictions
on longer pieces of audio as time goes on, but this
method eliminates the need for string matching be-
tween overlapping predictions. Diagrams showing
these two methods can be seen in Figures 2 and
3. We compare these two methods as part of our
evaluation.

3.2 NLU

RASA is a NLU framework that is made up of
components that work in a sequential pipeline. In
RASA, at least three components are usually re-
quired: a tokenizer which splits inputs into smaller
tokens (usually words), a featurizer that maps
words into a vector, and a classifier that maps from
vectors to slots, but others can be included.

The output of this classifier becomes a meaning
representation, which is a semantic frame made up
of slots, with an overarching intent. The example
below shows how the utterance I would like a flight
from Boston to Berlin is represented as a semantic
frame made up of 3 slots, one being the intent:

intent flight
source Boston
target Berlin

The dialogue designer determines the slot names
based on the domain, e.g., source for departure
airport and target for destination airport.

Instead of making each of the individual com-
ponents in RASA work incrementally, we follow
Khouzaimi et al. (2014) by inserting an incremental
manager component at the beginning of the RASA
pipeline that allows word-level IUs (i.e. word and
IU operation type) to be used as input.

Figure 4 shows a typical minimal pipeline for
RASA with our incremental manager component
added to enable the entire pipeline to process with
word-level IUs. This incremental manager compo-
nent maintains the unfolding utterance by adding
each new word (i.e., from an incremental ASR) to a
growing utterance prefix, or an incremental cache,
that is re-processed at each word (revoked words
are removed from the prefix, as needed).6

For example, the utterance from Boston to Berlin
as part of an ongoing dialogue about booking
flights is processed word-by-word, but RASA pro-
cesses each prefix as a separate utterance:

from
from Boston
from Boston to
from Boston to Berlin

Another challenge to incrementalizing RASA
is only outputting new updates to the NLU frame.
For example, at each word in the above utterance,
RASA should only produce the source:Boston
slot of the frame when the words from Boston are
uttered, and not again even though the prefix is
being reused at each increment. Likewise, the
slot target:Berlin should only be produced once
when the relevant words to Berlin are uttered.

For evaluating NLU, we use accuracy and F1
scores at each word increment.

4 Experiment 1: Incremental Evaluation
of ASR Models

Data To evaluate, we use datasets from two dif-
ferent domains: LibriSpeech and a recently assem-
bled dialogue dataset of simulated medical conver-
sations (Fareez et al., 2022).7 The LibriSpeech test-
clean dataset contains 5.4 hours of speech from 40
different speakers, 20 male and 20 female. This au-
dio is divided into over 2,600 files with an average
of about 20 words per file containing a vocabulary
of over 8,100 words. To ensure the audio would
work on all of our models, we converted the audio
files to WAV files.

6This version of incremental processing is called restart
incremental because it resets the internal model at each word
increment. More ideally, we would use a model that could
maintain its internal state and work incrementally (known
as update incremental), but recent language understanding
models are not amenable to word-level processing.

7We were unable to obtain the Switchboard corpus due to
prohibitive costs.
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Figure 4: Adapted from rasa.com: our Incrementalizer component at the beginning of any pipeline allows the entire
pipeline to process at the word level by managing and caching relevant incremental information.

The medical conversation dataset contains 272
audio files with corresponding transcripts. The
purpose of using this dialogue data is 1) to test
each model on domain data that presumably none
of them have been trained on (since this dataset
was just made public in 2022), and 2) to test how
each model performs on a dialogue dataset that
contains disfluencies such as fillers, corrections,
and restarts.

The audio files range from around 7 to 20 min-
utes in length or about 800 to 2,200 words. Due
to the size of these audio files, we split up the files
into utterances based on silence and then randomly
sample a set of 40 utterances, 17 of which were
able to be processed by all 6 ASR models (max 40
seconds, min 0.8 seconds, 6.1 seconds in length on
average) due to the length of some of the utterances
and the constraints that each model can handle.

Results The results are shown Table 2. When
using the Sliding Window method, local models
had lower latency (i.e. faster) than both the online
models. Some of the local ASR models using the
Concatenation method were faster than both of the
online ones. However, tests using the Concatena-
tion method was slower and had a higher EO than
the Sliding Window method given the same ASR.

Although slower and less stable (as measured by
EO), the Concatenated versions performed better
than their corresponding Sliding Window version
in overall all accuracy or WER. This makes sense as
the Concatenation method has access to the entire
context to make predictions where as the Sliding
Window has only a small portion of the context.
Comparing the online models, Google is less accu-

rate and more revoke dependant than Azure. How-
ever, Google is considerably quicker which could
be crucial in an interactive dialogue setting. The
cloud models had surprisingly low latency (though
the latency is dependent on the internet speed), but
the local ASRs tended to have the lowest latency.

The local ASR model which performed the best
in terms of WER was the W2V model using the
Concatenation method on the LibriSpeech data
and Vosk on the Medical Dialogue data, while the
model with the lowest Edit Overhead was the DS
model using the Sliding Window method. Though
a low WER is generally better, the number of re-
vokes has implications for downstream modules
in an SDS; keeping the EO low and Revokes per
Second low with a low WER means the model was
correct early, which is ideal.

Our results are consistent with previous evalua-
tions on Incremental ASR (Baumann et al., 2016)
that show that Google’s ASR predictions, although
fairly accurate overall, are not as stable as the oth-
ers, with the highest Edit Overhead of 0.279/0.228
and an average of about 4.5/5.1 Revokes per Sec-
ond on the LibriSpeech dataset and Medical Dia-
logue dataset respectively.

The DS and Vosk models’ WERs were higher
than some of the other models, but the low EO
and infrequent number of revokes make them po-
tentially good candidates for an SDS that requires
high accuracy as well as low latency and EO, for
example in a robotic platform. We suggest Con-
catenation for live microphones, with voice activity
detection or with certain models chunking,8 to pre-

8https://huggingface.co/blog/asr-chunking
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Incremental ASR Results on LibriSpeech
Google Azure W2V W2V (Con.) DS DS (Con.) PS PS (Con.) Vosk Vosk (Con.)

WER 13.2 9.1 10.6 4.0 18.3 8.4 40.4 31.8 33.4 6.4
LAT 0.197 0.539 0.099 0.127 0.181 1.443 0.105 0.220 0.104 0.167
EO 0.279 0.065 0.011 0.093 0.001 0.013 0.014 0.147 0.072 0.019

R/Sec 4.564 0.679 0.141 1.919 0.008 0.012 0.178 1.688 0.910 0.143
Sec/R 0.219 1.473 7.083 0.521 123.135 80.489 5.613 0.593 1.099 7.004

Incremental ASR Results on Medical Dialogue Dataset
Google Azure W2V W2V (Con.) DS DS (Con.) PS PS (Con.) Vosk Vosk (Con.)

WER 41.1 21.0 47.8 42.3 42.5 38.7 85.6 80.0 38.4 23.2
LAT 0.287 0.623 0.125 0.217 0.245 1.452 0.131 0.394 0.307 1.296
EO 0.243 0.055 0.016 0.211 0.000 0.014 0.005 0.240 0.048 0.025

R/Sec 5.944 0.207 0.253 6.376 0.000 0.013 0.046 2.447 0.215 0.079
Sec/R 0.168 4.837 3.953 0.157 inf 75.616 21.734 0.409 4.649 12.733

Table 2: Summary of results. Local ASRs had lower latency than cloud-based ASRs. The Concatenation method,
shown in the columns that contain a (Con.), had higher latency and resulted in a higher EO and RPS, but not as
many revokes as the online ASRs. inf means zero revokes per second.

vent running out of memory because it is more
accurate and does not require string matching.

5 Experiment 2: Evaluation of
Incremental RASA

In this section, we explain our experiment to evalu-
ate our incremental version of RASA NLU.

Task & Procedure For this experiment, we were
restricted to only use datasets that contain audio,
text transcriptions, and annotated frames. Since
SNIPS (Coucke et al., 2018) and SLURP (Bas-
tianelli et al., 2020b) datasets have these require-
ments, they are used for evaluation in this exper-
iment. Both datasets have speech (though in the
case of SNIPS, the audio is synthesized). We com-
pare incremental results using oracle (i.e., hand-
transcribed) speech from the two datasets as well
as ASR output from Google ASR (which had good
WER in Experiment 1 and has low latency, but high
edit overhead which is desired so RASA has a
chance to handle revokes).

The SNIPS dataset contains 14,484 entries
with seven categories of intents evenly distributed.
There is an average of 9 words per utterance with
66,500 entity annotations with the largest entity
representing 8.2% of the annotations. The SLURP
dataset consists of 14,488 utterances with 18 in-
tents unevenly distributed with the largest intent
representing 14.4% of the data. There is an average
of 7 words per utterance with 21,662 entity annota-
tions with he largest entity representing 14.9% of
the annotations.

Metrics & Baseline We calculate F1 score of the
intent and slots (termed entities in RASA; a false
positive is when a slot is filled erroneously, and

a false negative is when a slot is unfilled). The
F1 score at the end of an utterance is the highest
possible because at that point it has received all of
the audio information. To show how well RASA
works incrementally, we show F1 score at the end
of the utterance along with show how the F1 score
is affected when incrementally removing up to 7
frames/words before the end of the utterance.

We report the F1 score for both hand-
transcriptions and ASR output for both datasets. For
intent detection, the majority classifier baseline for
SNIPS is 14.3% and for SLURPS, 14.4% Similarly
the majority classifier baseline for entity detection
for SNIPS is 8.2% and for SLURPS entities, is
14.9%. Here we are not attempting to evaluate
the RASA model to achieve state-of-the-art results,
rather we are trying to evaluate the potential for
RASA as an incremental NLU.

Results Figure 5 shows the results for this exper-
iment. Naturally, the closer the utterance was to
the end of the utterance, the higher the F1 score.
Furthermore, the F1 scores for intent (a single clas-
sification of the entire utterance) was higher than
the F1 scores for the entities. This too is expected
as the single classification task of detecting intent
from either seven (SNIPS) or 18 intents (SLURPS),
is much simpler than detecting multiple entities
from a wider range of categories.

Results moreover show that even when the tran-
scripts are not 100% correct (i.e. come from an
ASR, the solid blue line in figure 5), RASA can
achieve a higher F1 score than the majority clas-
sifier as early as 6 words out for the more diffi-
cult task of entities detection. For intent detec-
tion, RASA performs significantly better than the
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Figure 5: TOP: Incremental results on the SNIPS dataset: transcriptions and ASR. The y-axis is the F1 score, the
x-axis is the number of words before the end of the utterance (i.e., before commit). BOTTOM: Incremental results
on the SLURP dataset: transcriptions and ASR. The y-axis is the F1 score, the x-axis is the number of words before
the end of the utterance.

baseline very quickly into an utterance and on the
SNIPS dataset, with imperfect transcripts from the
ASR, RASA achieves an F1 score over 80% as early
as three words before the end of the utterance.

This evaluation shows the potential for RASA
to be used effectively in an incremental setting, al-
lowing a system that uses this incremental setup to
be able to make decisions, start acting, or formulat-
ing queries before the end of an utterance. This is
agreement with with Manuvinakurike et al. (2018)
who showed that incremental NLU can be more
efficient. For example, an utterance such as go to
the right to pick up..., a robot could start moving in
a predicted direction before the robot even ‘knows’
that it is to pick up and before it ‘knows’ what to
pick up. In the setting of booking an airline or
flight, the words I would like to book..., the SDS

could already begin to start formulating the query
to check availability before the end of the sentence.

6 Conclusion

In this work, we tested six different ASR models
and RASA for NLU in an incremental setting and
we proposed a new metric for incremental ASR,

Revokes per Second as an informative addition
to existing incremental metrics. We showed that,
generally, as might be expected, online ASR (in
our evaluation, Google Cloud and Azure cloud ser-
vices) is not as fast as most of the local ASR models
tested, and while the online ASRs are some of the
most accurate ASRs we tested, they both have a
relatively high number of Revokes per Second and
Edit Overhead which, in combination with the la-
tency, could potentially lead to more issues in an
incremental setting because high edit rates could
require unnecessary processing. Our results are
informative as to the out of the box performance.
Furthermore, we also believe that our proposed
metric, Revokes per Second, is an interpretable
useful metric that should be used as ASR becomes
more prevalent in live settings such as in Spoken
Dialogue Systems on robots or in live captioning
in online meetings.

For NLU, we showed that RASA can work well
incrementally, offering designers and users earlier
than end-of-utterance predictions of user utterances.
This will enable systems to have the option to make
earlier decisions and actions, and our changes will
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be beneficial for long-term maintenance.
Each of the modules described in this paper are

implemented in Retico and will be made public.
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