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Abstract
How do artificial agents based on neural net-
works coordinate on a new language through
referential games over 3-d scenes? We extend
a popular CLEVR dataset to control for dif-
ferent combinations of features of target and
distractor objects and examine the success of
referential grounding learned by the agents.

1 Introduction

Agents interact with the physical world through
their actions and perception, and with other agents
through language. Their sensors and actuators al-
low them to sample the world and their own state
using measures that are continuous in nature such
as intensity of light, distance, angles, velocity and
others which can be measured with a high degree
of accuracy. On the other hand, the language that is
used to communicate with other agents is based
on representations that are composed of a lim-
ited set of discrete and arbitrarily chosen symbols.
How can both domains and representations arising
from these interactions be combined? How are the
ranges of measurements expressed in a continuous
domain mapped to discrete linguistic labels? How
is ambiguity and underspecification resolved? How
can agents achieve it through interactive grounding
(Regier, 1996; Roy, 2005; Cooper, 2023)?

In this paper we explore how agents based on
artificial neural networks learn referential ground-
ing of entities in images of 3-dimensional scenes
through language games (Clark, 1996; Bartlett and
Kazakov, 2005; Kirby et al., 2008; Steels and Loet-
zsch, 2009; Zaslavsky et al., 2018). One agent
is describing the entities represented as features
within bounding boxes of objects, inventing new
vocabulary as necessary. The other agent learns
to interpret the reference of symbols by identify-
ing one of the bounding boxes based on object at-
tributes such as shape, colour and size. Both agents
learn through the success of interaction. The nov-
elty of our work, compared with the previous work

with this setup (Kharitonov et al., 2019; Lazaridou
et al., 2017), consists the extension of the popular
CLEVR dataset (Johnson et al., 2016) with new
artificially generated 3-d scenes of objects. These
can be referred to based on attributes such as shape,
colour and size and discriminated based on differ-
ent overlaps of these attributes between the target
and the distractor objects.

2 CLEVR-Dale-2 and Dale-5

We extend the CLEVR dataset (Johnson et al.,
2016) by dividing the objects into one target object
and distractors and by controlling for the number
of shared attributes between these groups as in the
GRE algorithm in (Dale and Reiter, 1995). The
target object is always unique, because at least one
attribute is different from the distractors. Each
distractor can share a maximum of two attributes
with the target object. There is no restriction on
the relation between distractors, hence it is pos-
sible to have multiple identical distractors in one
image. Given the ranking of features in the origi-
nal GRE algorithm, the target object is therefore
identifiable either by shape (1), shape and colour
(2) or shape, colour and size (3). For each image,
fixed-size bounding boxes are extracted around the
centre-point of each object. The Dale-2 dataset con-
tains one target object and one distractor, while the
Dale-5 dataset contains one target object and four
distractors. Both datasets contain 10.000 images.
Examples are shown in Appendix A.

3 Language games

The language games were developed and run in the
EGG framework (Kharitonov et al., 2019).1 Both
our sender and receiver have a similar architecture
to the agnostic sender and receiver of (Lazaridou
et al., 2017), as shown in Appendix B. One cen-
tral difference is the production of the message.

1https://github.com/DominikKuenkele/MLT_Master-
Thesis

https://github.com/DominikKuenkele/MLT_Master-Thesis
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As we focus on sequences of referring expressions,
made-up of different attributes, our models produce
sequences of symbols for the message instead of
a single symbol to refer to an image. This is done
by using an encoder LSTM (sender) and a decoder
LSTM (receiver) to encode language descriptions.
Another difference is that both sender and receiver
receive visual input as segmented objects rather
than as two images. The order of the objects is
random, except that the first object for the sender
is always the target object to be referred to. For the
sender, the images are passed through ResNet101
(He et al., 2016) and a following linear layer that
reduces the dimensions to an embedding size es.
All embedded images are concatenated and passed
through another linear layer to reduce the dimen-
sions to the hidden size hs. This is then used as
the initial state of the encoder LSTM. After, the
sequence of labels is generated through Gumbel-
Softmax relaxation (Jang et al., 2017). The receiver
also encodes all images using ResNet101 with a
following linear layer, reducing it to er. The se-
quence, received from the sender is the input for its
decoder LSTM, where a hidden state with a dimen-
sion of hr is randomly initialised. After each step
of the LSTM, the receiver calculates a dot product
between the hidden state and all of its image en-
codings. The receiver then ‘points’ to one of the
images by applying a softmax function over the
results of the dot products. The loss is calculated
using the NLL-loss. Following, the losses for all
steps are summed up, and all weights of the re-
ceiver as well as the sender are updated based on
this summed loss.

4 Experiments and results

There are five variables in the experiments that are
adjusted: (1) the image embedding size for the
sender es, (2) the LSTM hidden size for the sender
hs, (3) the image/message embedding size for the
receiver er, (4) the LSTM hidden size for the re-
ceiver hr and (5) the size of the vocabulary |V |.
Table 1 shows the accuracy of the models calcu-
lated on the basis of the success of communication
if the receiver can identify the target object. A
random guess corresponds to 50% in the Dale-2
dataset and 20% in the Dale-5 dataset.

For the Dale-2 dataset it can be clearly seen that
an embedding size and hidden size that are as high
as the vocabulary size are beneficial for identifying
the correct object. The receiver identifies almost

Dataset hs es hr er |V | Acc.
Dale-2 10 10 10 10 10 95%
Dale-2 50 50 128 128 10 50%
Dale-5 10 10 10 10 10 23%
Dale-5 10 10 10 10 20 23%
Dale-5 10 10 10 10 100 41%

Table 1: Results: h are different hidden sizes, e embed-
ding sizes and |V | vocabulary sizes.

every sample correctly with all sizes of 10. When
the hidden and embedding sizes are increased, the
guesses by the receiver are random. Interestingly, a
vocabulary size of 10 is enough to communicate a
meaningful message for the Dale-2 dataset. Using
Dale-5 with four distractors and with low hidden,
embedding and vocabulary sizes, the agents barely
pass the random baseline at 23%. Only increasing
the vocabulary size to 100 raises the accuracy by al-
most 20% to 43% which is still considerably lower
than the 95% of the Dale-2 dataset.

5 Discussion and future work

Unsurprisingly, the agents have a much higher dif-
ficulty to discriminate a target object from four
instead of one distractor. Since we discriminate ob-
jects based on properties that are also distinguished
in human cognition (colour, size, shape), we expect
that the vocabulary onto which the agents converge
reflects these categories and is therefore close to
human vocabulary. There are 48 possible combina-
tions of attributes. Still, for Dale-2, a vocabulary
size of only 10 is enough for an almost perfect
accuracy with two objects. This hints to the fact
that the agents don’t describe the complete target
object, but only rely on discriminative attributes
between the objects. The need for a more detailed
description of discriminative attributes is higher
when more distractors are involved. Therefore, the
models must learn more combinations of symbols
in order to attest to this higher level of detail and
how to relate them to features in the images.

In our ongoing work we are extending our anal-
ysis of features and agent configurations as well
as we are investigating the emerged language and
the new vocabulary, whether it consists of similar
categories as human language and how its words
are combined to form complete messages. In our
future work we will extend the learning to rela-
tions between entities which introduce a high level
referential underspecification.
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A Extended CLEVR datasets

Figure 1: An example from the Dale-2 dataset

In Figure 1, the small red cube is the target object.
Since all attributes except for the size are shared
with the distractor, all three attributes are necessary,
to identify it following Dale and Reiter (1995)’s
rules, namely the small red cube.

Figure 2: An example from the Dale-5 dataset

The target object in Figure 2 is the purple cylin-
der. It shares the same colour and size with the
purple sphere, the same size with the two cubes
and no attribute with the turquoise sphere. It can
be uniquely identified as the cylinder.

B Setup of the language game
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