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Abstract

Feedback utterances such as ‘yeah’, ‘mhm’,
and ‘okay’, convey different communicative
functions depending on their prosodic realiza-
tions, as well as the conversational context in
which they are produced. In this paper, we in-
vestigate the performance of different models
and features for classifying the communicative
function of short feedback tokens in American
English dialog. We experiment with a combina-
tion of lexical and prosodic features extracted
from the feedback utterance, as well as context
features from the preceding utterance of the in-
terlocutor. Given the limited amount of training
data, we explore the use of a pre-trained large
language model (GPT-3) to encode contextual
information, as well as SimCSE sentence em-
beddings. The results show that good perfor-
mance can be achieved with only SimCSE and
lexical features, while the best performance is
achieved by solely fine-tuning GPT-3, even if it
does not have access to any prosodic features.

1 Introduction

In human-human conversations, short feedback to-
kens such as ‘mhm’, ‘yeah’, and ‘wow’ serve differ-
ent communicative functions. For example, ‘yeah’
can indicate a response to a question, express agree-
ment to an opinion, convey surprise, or simply sig-
nal that the interlocutor should continue speaking,
depending on the prosodic realization, as well as
the conversational context. The terms feedback and
backchannels are sometimes used interchangeably.
However, in this paper we use the term backchannel
to denote a specific type of feedback that signals
that the speaking partner should continue speaking.

There has been a lot of work on incorporating
user-generated or system-generated feedback in
dialog systems and human-robot interactions (Ax-
elsson et al., 2022). Most work on incorporating
feedback in dialog systems have focused on the tim-
ing of backchannels (Ward and Tsukahara, 2000;
Ruede et al., 2017, 2019; Morency et al., 2010;

Adiba et al., 2021; Boudin et al., 2021; Ishii et al.,
2021). There has also been work on predicting
which type of backchannel or feedback to produce
(i.e., predicting what function the backchannel or
feedback should convey) (Kawahara et al., 2016;
Ortega et al., 2020; Adiba et al., 2021; Boudin
et al., 2021; Jang et al., 2021; Lala et al., 2022).
In this paper, we focus on the classification of the
communicative function of short feedback tokens
(i.e., assign the function of feedback), given their
lexical and prosodic form as well as the preceding
conversational context.

A model that automatically classifies the commu-
nicative function of feedback can be used for dif-
ferent purposes. When used offline, such a model
could be used to automatically annotate the func-
tions of feedback in a speech corpus. The annotated
feedback can then be used to, for example, gain
insights into human conversational behavior, or to
learn how to synthesize feedback with appropriate
prosody, given the feedback function. When used
online in a spoken dialog system, it could be used
to classify feedback coming from the user.

In this paper, we investigate the performance of
different models and features for classifying the
communicative function of short feedback tokens
in the Switchboard corpus (Godfrey et al., 1992).
We use our previously proposed annotation scheme
(Figueroa et al., 2022), consisting of 10 feedback
functions: continue, non-understanding, agree, dis-
agree, yes/no response, sympathy, mild/strong sur-
prise, and disapproval. For the classification task,
we use lexical and prosodic features from the short
feedback token, as well as contextual features from
the preceding utterance of the interlocutor. Since
the representation of dialog context is non-trivial,
especially considering the limited amount of anno-
tated data at our disposal, we also investigate the
use of probability distributions from a pre-trained
large language model (GPT-3) as input to a Support
Vector Machine (SVM) classifier, along with the
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previously mentioned features. To the best of our
knowledge, probability distributions from GPT-3
have not been used as an input to another machine
learning algorithm for this problem before.

2 Related Work

The classification of feedback functions is related
to the more general problem of Dialog Act classifi-
cation, where the goal is to identify the communica-
tive function of an utterance in dialog. However, in
most Dialog Act classification schemes, backchan-
nels are typically treated as a single dialog act cat-
egory and no fine-grained distinctions are made
(Stolcke et al., 2000; Dielmann and Renals, 2008;
Liu et al., 2017).

When it comes to the more specific problem of
classifying the communicative function of feed-
back, the only related work we are aware of are
Prévot et al. (2015), Neiberg et al. (2013), and
Gravano et al. (2007). Although Gravano et al.
(2007) do not specifically classify feedback, they
do classify affirmative words, which function as a
backchannel or acknowledgment/agreement. They
use JRIP, a machine learning algorithm to clas-
sify affirmative words using text-based, timing, and
acoustic-prosodic features from both the affirma-
tive words and context preceding and following
the affirmative words. While Neiberg et al. (2013)
do not propose a classifier for feedback functions,
they use semi-supervised annotations and prosodic
clustering to investigate how different prosodic real-
izations of feedback affect the function of feedback
tokens. In Prévot et al. (2015), feedback functions
are classified into two levels: base function, and
evaluation function, which respectively correspond
to generic and specific listener responses (Bave-
las et al., 2000). A Random forest classifier is
first used to classify feedback in the base level
into the following functions: contact, acknowledge-
ment, evaluation-base, answer, elicit or other. If
the feedback is classified into the evaluation-base
function, another Random forest classifier is used
to classify the feedback into the following func-
tions: approval, expectation, amusement, or con-
firmation/doubt. Lexical, acoustic, and position
information is used of the feedback. Bigrams and
the function of the context (the previous utterance)
are also used for the classification task.

Feedback Function Count GPT-3 prompt
label

(C) Continue 1024 Continuer
(U) Non-understanding 63 Misunderstand
(A) Agree 435 Agree
(D) Disagree 46 Disagree
(Y) Yes-response 56 Yes-answer
(N) No-response 114 No-answer
(S) Sympathy 82 Sympathy
(MS) Mild Surprise 103 Interest
(SS) Strong Surprise 191 Surprise
(Ds) Disapproval 65 Reproach
(O) Other 77 Other

Table 1: Feedback functions, count of manually anno-
tated data, and corresponding labels in GPT-3 prompt.

3 Communicative Functions of Feedback

A number of annotation schemes have been pro-
posed for annotating the communicative functions
of feedback (Allwood et al., 1992, 2007; Bunt,
2009; Buschmeier et al., 2011; Neiberg et al., 2013;
Prévot et al., 2015, 2016; Malisz et al., 2016;
Figueroa et al., 2022). As mentioned, feedback
can be categorized as having two communicative
functions: generic and specific (Bavelas et al.,
2000; Prévot et al., 2015, 2016; Ortega et al., 2020;
Boudin et al., 2021). Generic feedback can be
thought of as continuers; they encourage the in-
terlocutor to continue speaking (Schegloff, 1982).
Specific feedback can be thought of as assessments;
they are listener responses that depend on the con-
text of the interlocutor (Goodwin, 1986). The
DIT++ taxomony of dialogue acts also categorizes
feedback by two functions, allo-feedback and auto-
feedback which carry information about attention,
perception, interpretation, evaluation, and execu-
tion of the feedback.

Allwood et al. (1992) introduced four commu-
nicative functions of feedback:

• Contact: whether the interlocutor is willing
and able to continue the interaction

• Perception: whether the interlocutor is willing
and able to perceive the message

• Understanding: whether the interlocutor is
willing and able to understand the message

• Attitudinal reactions: whether the interlocutor
is willing and able to react and (adequately)
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respond to the message, specifically whether
he/she accepts or rejects it.

These four feedback functions are related to the
four levels of joint actions of an addressee proposed
by Clark (1994) which are important for establish-
ing common ground. The four feedback functions
introduced by Allwood et al. (1992) have inspired
many annotations schemes for annotating functions
of feedback (Allwood et al., 2007; Buschmeier
et al., 2011; Malisz et al., 2016; Neiberg et al.,
2013).

In this work, we use our previously proposed
annotation scheme (Figueroa et al., 2022), con-
sisting of 10 feedback functions: continue, non-
understanding, agree, disagree, yes/no response,
sympathy, mild/strong surprise, and disapproval.
The scheme also includes an Other category that is
used to capture lexical tokens that are not feedback
but share the same lexical form as feedback, for
example, discourse markers (‘okay, let’s begin’) or
literal uses (‘he was standing on the right’). The
feedback functions continue and understanding can
be thought of being in the contact, perception, or
understanding grounding level, whereas the other
feedback functions are on the attitudinal grounding
level.

4 Method

4.1 Corpus and feedback functions
We extracted short feedback tokens from the
Switchboard corpus (Godfrey et al., 1992), accord-
ing to the definition and selection criteria given by
Figueroa et al. (2022). Switchboard consists of
about 2,500 dyadic telephone calls between 500 na-
tive speakers of American English, recorded in two
separate channels and lasting about 3-10 minutes.
The corpus also contains transcriptions and word
level time-alignments.

In total, Switchboard contains 85,956 instances
of potential feedback tokens, according to the work-
ing definition in Figueroa et al. (2022). Note that
this definition is based on the lexical form of the
token, and thus may include instances which are
not in fact feedback, such as discourse markers.
Thus, we train our classifier to also classify such
instances as Other. From the full set, we compiled
a set of 2256 instances, which were manually anno-
tated with one of the 10 communicative functions
(plus Other), as identified in Figueroa et al. (2022),
by listening to them in context. Table 1 lists these
functions and their counts in our data set.

4.2 Feedback features
For the short feedback utterance, we use the lexical
token as well as its prosodic realization as features.

Lexical tokens (e.g. ‘yeah’, ‘wow’) and non-
lexical tokens (e.g. ‘mhm’, ‘hm’) were encoded
as one-hot encodings using the scikit-learn Python
library (Pedregosa et al., 2011).

Prosodic features – duration, mean pitch, pitch
slope, pitch range, and mean intensity – were ex-
tracted from the feedback instances. We used
Parselmouth (Jadoul et al., 2018) to extract pitch
(F0 Hz) and intensity (dB) values. The pitch values
were first transformed to log scale and then z-score
normalized, intensity values were also z-score nor-
malized. The normalization was done per speaker,
where the mean and standard deviation for each
speaker were computed from their entire conversa-
tion. Pitch slope was calculated by subtracting the
mean of the z-score normalized pitch values of the
second half of the feedback from the mean of the
z-score normalized pitch values of the first half of
the feedback.

4.3 Context features
We also added contextual features from 4000 ms of
the interlocutor’s utterance preceding the feedback.
Previous work in feedback modeling have extracted
features from the context by either setting an arbi-
trary window length or number of words. We ex-
perimented with a window length of between 1500
- 4000 ms and found that 4000 ms often captured
full sentences. We decided to only use features
from the preceding utterance of the interlocutor
(and not any future context) in order to make the
model applicable for online classification.

Part-of-speech (POS) tags of the preceding ut-
terance were extracted using the spaCy Python li-
brary. From these, POS bigrams were created and
sorted by their term frequency-inverse document
frequency (TF-IDF), treating the 10 feedback func-
tions as documents and the POS bigrams as terms.
From this list, the top 30 bigrams were selected and
used as one-hot features.

Dialog Acts were automatically assigned to the
interlocutor’s utterance using DialogTag (Malik,
2020), a Python libary. We collapsed the fol-
lowing dialog tags into a single ‘Question’ tag:
‘Yes-No-Question’, ‘Declarative Yes-No-Question’,
‘Rhetorical-Question’, ‘Wh-Question’, and ‘Tag-
Question’. The dialog tags were then one-hot en-
coded.
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Sentence Embedding of the previous utterance
was obtained using SimCSE (Gao et al., 2021),
which is an auto-encoding embedding technique
based on contrastive learning. During training,
SimCSE uses BERT encodings of the input and
then fine-tunes the parameters using the contrastive
learning objective which pushes together semanti-
cally similar pairs and pushes apart semantically
dissimilar pairs. We used the sup-simcse-bert-base-
uncased pre-trained model of SimCSE which is
readily available on Github (Gao et al., 2021).

4.4 GPT-3
As an alternative to the context features listed
above, we also explored the use of GPT-3 from
OpenAI (Brown et al., 2020) to encode the previous
utterance, as well as the lexical form of the feed-
back token. We tested three different approaches:
zero-short, few-shot, and fine-tuning.

For zero-shot classification, we provided GPT-3
with a prompt similar to the one shown in Table 2.
The prompt ends with the opening bracket at the
end, and GPT-3 is asked to predict the next token
(marked in bold). This is done using the davinci-
003 model. For few-shot classification, we pro-
vided an example of each function, with both the
dialog and the corresponding label, in addition to
the instructions.

The third approach is to fine-tune GPT-3. We
fine-tuned the davinci base model, since davinci-
003 is not available for fine-tuning. For fine-tuning,
there are no instructions or examples in the prompt;
the model is only given training examples, which
consist of input text (the preceding utterance and
the feedback token) and its associated output (the
function label).

Note that, in Table 2, the feedback function la-
bels in the GPT-3 prompt have been changed from
the ones listed in the first column of Table 1. Since
GPT-3 generates word pieces, we changed the feed-
back function labels in the prompt so that they
would not start with the same first letters. This
way, we can simply inspect the first generated word
piece from GPT-3 and map it to one of the func-
tions.

For zero-shot and few-shot classification, we
also explored if the prediction could be used as
an input feature to the feedback function classifier,
rather than using it directly. For this, we use the
probability distribution that GPT-3 outputs over
potential function labels (or rather their prefix).

GPT-3 Prompt
The following is a list of dialog acts and their
description in parentheses:
- Continuer (Backchannel)
- Misunderstand (Expressing non-understanding)
- Agree (Agreeing with a statement)
- Disagree (Disagreeing with a statement)
- Yes-answer (A positive answer to a
yes/no question)
- No-answer (A negative answer to a
yes/no question)
- Sympathy (Expressing empathy)
- Reproach (Expressing disapproval or disgust or
disappointment)
- Interest (Expressing interest)
- Surprise (Expressing surprise)
- Other (thinking or interrupting conversation)
The following is a dialog between two persons.
The dialog acts are written in brackets.
A: i was mowing the lawn yesterday
B: mhm [continuer]

Table 2: Prompt given to GPT-3.

From GPT-3, we can get the top five labels that
would have been generated by the language model
and their corresponding probabilities. For example,
given the feedback ‘yeah’, GPT-3 could predict the
following word pieces: ‘Ag’ 74%, ‘Contin’ 1.7%,
‘Yes’ 21%, ‘agree’ 3%, and ‘yes’ 0.3%. From these
probabilities, we can create a vector where feed-
back function (A)gree is assigned 77%, (C)ontinue
1.7%, (Y)es-response 21.3%, and all other func-
tions plus the Other category are assigned 0%.
These probability distributions can then be used
as input features to the main function classifier.

For all GPT-3 models we use the follow-
ing settings: temperature=0, max_tokens=1, fre-
quency_penalty=0, presence_penalty=0.6, and log-
probs=5.

4.5 Function classifier
The task of the main classifier is to classify the
feedback function, given the features listed above.
As explained, GPT-3 can be used both as a main
classifier and as a method for encoding lexical and
contextual information, which can then be used
as input to another classifier. Since we did not
have a large data set to train a deep learning model,
we explored three machine learning models which
can handle small data sets (Forman and Cohen,
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2004): Support Vector Machine (SVM), Logistic
Regression, and Random Forest, using the classi-
fiers implemented in scikit-learn a Python library
(Pedregosa et al., 2011).

For the three classifiers, we set the parameter
class_weight as balanced. For the SVM classifier
we used a linear kernel, we also experimented with
radial basis function kernel but the linear kernel
gave the best results. For the Logistic Regression
classifier we set the max_iter to 200. For all other
parameters we used the default settings. In general,
we found that the SVM classifier performed the
best, and thus only report our results from the SVM
classifiers.

We experiment with different combinations of
input features and evaluate our SVM classifiers us-
ing 10-fold cross validation. In order to evaluate
the model performance, we use the F1-weighted
score. In the cases where we do not fine-tune GPT-
3 and use it directly as a classifier, we do not use
cross validation, but instead use our entire anno-
tated data.

5 Results

5.1 Classifier performance
Table 3 summarizes the F1-weighted scores of the
different models with different combinations of
input features. For comparison, we also report
the majority-class baseline, as well as the inter-
annotator agreement annotations from our previ-
ous work (Figueroa et al., 2022). Note that only
1124 feedback utterances were annotated for the
inter-annotator agreements. In cases where the an-
notators could not decide on a single function (e.g.
‘A/C’), we chose one of the functions randomly
while calculating the F1-weighted score. This pro-
cedure was averaged over 10 times.

When only lexical features are used (Model 1),
we get a fairly high F1-weighted score (0.63) which
outperforms the baseline. We used the majority-
class baseline which returns the frequent class label.
The prosodic features are not very informative, and
adding them to the lexical features do not improve
the performance further (Model 16).

Among the contextual features, SimCSE is
clearly the most informative (Model 7). Just using
GPT-3 as a zero-shot or few-shot classifier or as in-
put features does not appear to be very useful (Mod-
els 10,11,13,14), considering that it also encodes
lexical information about the feedback utterance;
the performance is on par with Model 1 which

Model #: Features F-score
1: Lexical 0.63
Prosody
2: Duration 0.10
3: Mean pitch 0.16
4: Pitch slope 0.24
5: Pitch range 0.18
6: Mean intensity 0.15
Context
7: SimCSE 0.32
8: Dialog act (DA) 0.14
9: Part-of-speech (POS) 0.09
GPT-3
10: Zero-shot majority* 0.61
11: Few-shot majority* 0.65
12: Fine-tuned* 0.80
13: Zero-shot as features (ZS) 0.61
14: Few-shot as features (FS) 0.63
Combinations
15: Prosody (all) 0.37
16: Lexical + Prosody (LexPro) 0.63
17: Lexical + GPT-3 (ZS) 0.68
18: Lexical + GPT-3 (FS) 0.69
19: Lexical + SimCSE 0.72
20: LexPro + SimCSE + DA + GPT-3 (FS) 0.76
Majority-class baseline 0.28
Inter-annotator agreement 0.74

Table 3: F1 weighted scores for different feature sets.
*Uses GPT-3 (and not SVM) as the main classifier.

only uses lexical features. There is also no signifi-
cant difference between using zero-shot or few-shot
(Model 13,14) (t(18) = 1.585; p = 0.13). Lexi-
cal features in combination with SimCSE, on the
other hand, do give a better performance: Model
19 performs as well as the inter-annotator agree-
ment score. Figure 1 shows the confusion matrix
of Model 19 trained on 1804 examples and evalu-
ated on a 452 test set. We can see that it performs
poorly on (D)isagree, (Ds) Disapproval, and (Y)es-
response. This poor performance could be due to
the few training examples.

To improve this score further, we need to add
prosodic features, the dialog act, and the GPT-3
distributions to the lexical and SimCSE features.
While Model 20 performs significantly better than
Model 19 (t(18) = 2.509; p = 0.02), the difference
is not very big, considering the much larger fea-
ture set. Figure 2 shows the confusion matrix of
Model 20 trained on the same 1804 examples and
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Figure 1: Confusion matrix for Model 19.

Figure 2: Confusion matrix for Model 20.

evaluated on the same 452 test set. By adding the
prosodic features and the dialog act, we can see that
it improves the classification for (C)ontinue, (SS)
Strong Surprise, (MS) Mild Surprise, (D)isagree,
(U) Non-Understanding, and (Y)es-response.

The best performing model is the GPT-3 fine-
tuned classifier (Model 12), which performs sig-
nificantly better than Model 20 (t(18) = -2.803; p
= 0.01). Figure 3 shows the confusion matrix of
Model 12 trained on the 1804 examples and eval-
uated on the 452 test set. The GPT-3 fine-tuned
classifier improves the classification for (C) Con-
tinue, (SS) Strong Surprise, (O) Other, (U) Non-
understanding, (N)o-response, and (Y)es-response.

To conclude, models 12, 19, and 20 are all vi-
able classifiers for feedback functions, and they all
seem to perform on par with the inter-annotator
agreement. The choice of classifier depends on spe-
cific requirements, for example whether it should
be used offline or online, and whether access to
GPT-3 is available.

Figure 3: Confusion matrix for Model 12.

5.2 Labeling the remaining Switchboard
corpus

Given that we now have working classifiers of feed-
back functions for Switchboard, we finally experi-
mented with applying one of them to the remaining
set of 83,700 potential feedback instances in the
Switchboard corpus, in order to study the general
distribution of the communicative functions. For
this, we used Model 19, as it has a low cost while
the performance is relatively good. The distribu-
tions are shown in Table 4 which include the dis-
tributions of the 2,256 manually annotated lexical
tokens and the 83,700 automatically annotated lex-
ical tokens. In total, there were 74,106 instances
of actual feedback (not Other), according to the
classifier. As can be seen, (C)ontinue and (A)gree
are the most frequent feedback functions.

5.3 Investigating sex differences
To illustrate how this classification can be used for
further analysis, we also broke down these num-
bers based on the sex of the listener (i.e., the in-
terlocutor producing the feedback), as provided in
the Switchboard corpus. This is shown in Table 4.
Note that in the metadata of Switchboard there are
only two options for sex, female and male. A chi-
square test revealed that sex influences the type of
feedback (χ2(9) = 1165.71, p < .001). Analysis
of the standardized residuals (α = 0.05) revealed
that there were significant differences in most feed-
back types, as indicated in Table 4. Perhaps most
notably, the use of (S)ympathy, and (SS) Strong
surprise is much more frequent for females than
males. To further investigate whether these effects
are also affected by the sex of the interlocutor re-
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Function Total Tot. % F % M % FF % FM % MM % MF % Ov %
(C) Continue 39499 51.8 54.2 48.8 54.7 53.6 48.4 49.3 45.3
(U) Non-understanding 342 0.45 0.34 0.58 0.31 0.39 0.56 0.60 26.9
(A) Agree 22809 29.9 26.3 34.3 26.3 26.3 35.3 33.2 45.3
(D) Disagree 986 1.29 1.12 1.51 0.96 1.32 1.56 1.44 36.0
(Y) Yes-response 4101 5.38 4.93 5.93 5.05 4.77 5.90 5.97 45.1
(N) No-response 787 1.03 1.02 1.05 0.96 1.08 0.90 1.24 34.6
(S) Sympathy 1775 2.33 3.19 1.25 3.29 3.06 1.01 1.55 46.7
(MS) Mild surprise 2325 3.05 3.03 3.07 2.82 3.31 3.01 3.13 37.7
(SS) Strong surprise 3023 3.96 5.03 2.64 4.81 5.31 2.62 2.66 41.8
(Ds) Disapproval 638 0.84 0.81 0.86 0.78 0.85 0.80 0.94 39.8
(O) Other 9671

Table 4: Distribution of manually annotated and automatically annotated tokens in the Switchboard corpus.
Distribution percentages are calculated excluding the Other category. Automatic annotations used Model 19.
F=Female, M=Male. FM = Female-to-Male feedback, etc. Bold numbers denote significant deviations from the
expected distribution (α = 0.05). Ov=Overlap.

ceiving the feedback, we also split these numbers
based on the sex of both interlocutors, as can be
seen in Table 4. Chi-square tests revealed that there
was indeed such an effect, both when the feedback
was produced by males (χ2(9) = 46.2, p < .001)
and females (χ2(9) = 34.7, p < .05). For exam-
ple, in male-male conversations, there is less use of
(S)ympathy, compared to in male-female conversa-
tions.

Our analysis also shows that in general, females
produce 2.73 feedback tokens per minute, whereas
males produce 2.23 feedback tokens per minute.
Our findings only reflect observations in the Switch-
board corpus and therefore these findings may not
be generalizable to other corpora.

5.4 Analysis of overlap
Another example in which this classification can be
used is in analyzing whether certain feedback func-
tions overlap more or less with the speech of the
interlocutor. In order to determine whether a feed-
back was overlapping or not, we took the start time
of the feedback and searched for that timestamp
in the speech of the interlocutor, if that timestamp
occurred during or the start of the interlocutor’s
speech we assigned the feedback as overlapping.
If the start time of the feedback occurred during
the interlocutor’s silence or laughter we assigned
the feedback as not overlapping. The percentage of
overlap for each feedback type is shown in Table 4.

Using this method, we find that (U) Non-
understanding, (D)isagree, (N)o-response, (MS)
Mild Surprise, and (Ds) Disapproval tend to not
overlap as much with the interlocutor’s speech. Lis-

teners may wait to produce a feedback function (U)
Non-understanding until the end of the interlocu-
tor’s turn in order to first see if they can repair
their comprehension of what was said or being said.
Listener’s may also wait to produce feedback func-
tions with negative connotations such as (D)isagree,
(N)o-response, and (Ds) Disapproval, in order to
decide whether they should take the turn, or to
further respond to what the interlocutor has said.

We had expected feedback functions (C)ontinue,
(A)gree, (S)ympathy, (MS) Mild Surprise, and (SS)
Strong Surprise to overlap with the speech of the
interlocutor. However, we find that for (C)ontinue,
(A)gree, (S)ympathy, (SS) Stong Surprise, these
feedback functions almost equally overlap and not
overlap. Further analysis should be done to see if
the silences of the interlocutor’s are short breaths
or longer pauses. It would be interesting to do an
analysis similar to the one done by Goodwin (1986)
where they compared assessments and continuers.
They found that although assessments and contin-
uers share similar contexts (they are said during the
speech of the interlocutor), continuers bridge turn-
constructional units of the interlocutor, whereas
assessments do not interrupt the subsequent unit of
the interlocutor. This type of analysis which takes
into consideration conversational units of the inter-
locutor may give more insight into where exactly
these feedback functions occur within the inter-
locutor’s turn, as well as give information whether
the feedback functions which occur during the in-
terlocutor’s silences are between or within turn-
constructional units.
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6 Discussion

Although fine-tuning GPT-3 (Model 12) performs
the best, it may not be suitable for an online set-
ting or for annotating large corpora. This model is
dependent on OpenAI’s API which can have down-
time and using it can be costly. Model 19 (SimCSE
+ Lexical), which can fairly accurately predict feed-
back functions on par with human annotators, can
be an option for online settings or for annotating
large corpora.

The prosodic features performed poorly, and in
the end they did not contribute much to the best-
performing models. The best model, using a fine-
tuned GPT-3, did not use any prosodic features at
all. This is perhaps a bit surprising, since prosody
should help to disambiguate feedback tokens which
are not easily classifiable given only textual infor-
mation, such as ‘no’ when it is used as negative
agreement. On the other hand, it might be the
case that the preceding context contains redundant
information, and could for example help to dis-
ambiguate a question (preceding a No-response)
vs. a statement (preceding a Disapproval). In any
case, future work should explore better prosodic
features, using distributed, self-supervised speech
representations (Lin et al., 2023). It is also interest-
ing to note that discrete representations of dialog
context, such as Dialog Acts and Part-of-speech,
performed much more poorly than the distributed
representations (SimCSE).

One reason that the Dialog Acts may not have
performed well (Model 8) could be due to the pre-
ceding context being misclassified with the incor-
rect dialog act. Therefore, this is an error that was
propagated into the model. This propagation of
errors can also be said for the probability distribu-
tions by GPT-3 (Models 13, 14). For future work,
further analysis should be done on how these errors
affect the model.

There is also more experimentation that could
be done with GPT-3. Without fine-tuning, the prob-
ability distributions from zero-shot and few-shot
classifications did not perform better than the lexi-
cal one-hot encodings. Experimentation with dif-
ferent prompts could improve the GPT-3 features.
In future work, we would like to use a separate
training set to fine-tune the GPT-3 model so that
we can evaluate the probability distributions of the
fine-tuned model, and potentially combine them
with other features. One potential route could also
be to add prosodic information to the prompts by

discretizing them. For example, pitch slope could
be disctretized by describing it as flat, rising, or
falling.

Our classification models have only been trained
and evaluated with the Switchboard corpus, it
would be interesting to see how our best models
perform with other corpora, such as corpora where
the interlocutors are speaking face-to-face.

7 Conclusion

In this paper, we proposed different models
which can automatically classify 10 communicative
feedback functions: continue, non-understanding,
agree, disagree, yes/no response, sympathy,
mild/strong surprise, and disapproval. We experi-
mented with different combinations of lexical and
prosodic features from the feedback utterances, as
well as context features from the preceding utter-
ance of the interlocutor as input to a SVM classifier.
For contextual features, we investigated the use of
probability distributions from the predicted func-
tion labels from a zero-shot or few-shot GPT-3
classifier, as well as SimCSE sentence embeddings.
Finally, we also compared with a fine-tuned GPT-3
classifier.

Our experiments show that just using lexical fea-
tures and SimCSE gives a fairly good performance,
on par with inter-annotator agreement. While using
GPT-3 in a zero-shot or few-shot fashion does not
contribute much, a fine-tuned GPT-3 model outper-
forms all other models, even though no prosodic
information is used.

The automatic annotations of the communicative
functions of feedback in the Switchboard corpus
by Model 19 can be found in this repository:
https://github.com/carolfigPhD/FeedbackAnnotation
Scheme.

Limitations

We are aware that one limitation in terms of repro-
ducibility is that GPT-3 may not return the same la-
bels if the experiments were to be run again. More-
over, GPT-3 is like a black-box, when we fine-tune
the model we do not know what exactly is being
fine-tuned. Another limitation is accessibility, not
everyone will have access to GPT-3 which can be
costly and is dependent on the services of OpenAI.

We have also not examined if there are differ-
ences in feedback in face-to-face conversations
compared to telephone conversations. As men-
tioned, we have only trained and evaluated our
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classifiers with the Switchboard corpus but have
not evaluated with a face-to-face corpus.
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