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Abstract

In conversation, speakers produce language
incrementally, word by word, while continu-
ously monitoring the appropriateness of their
own contribution in the dynamically unfold-
ing context of the conversation; and this of-
ten leads them to repair their own utterance
on the fly. This real-time language processing
capacity is furthermore crucial to the develop-
ment of fluent and natural conversational AI.
In this paper, we use a previously learned Dy-
namic Syntax grammar and the CHILDES cor-
pus to develop, train and evaluate a probabilis-
tic model for incremental generation where in-
put to the model is a purely semantic gen-
eration goal concept in Type Theory with
Records (TTR)1. We show that the model’s
output exactly matches the gold candidate in
78% of cases with a ROUGE-l score of 0.86.
We further do a zero-shot evaluation of the
ability of the same model to generate self-
repairs when the generation goal changes mid-
utterance. Automatic evaluation shows that
the model can generate self-repairs correctly
in 85% of cases. A small human evaluation
confirms the naturalness and grammaticality
of the generated self-repairs. Overall, these re-
sults further highlight the generalisation power
of grammar-based models and lay the founda-
tions for more controllable, and naturally in-
teractive conversational AI systems.

1 Introduction

People process language incrementally, in real-
time (see Crocker et al. (2000); Ferreira (1996);
Kempson et al. (2016) among many others),
i.e. both language understanding and genera-
tion proceed on a word by word rather than a
sentence by sentence, or utterance by utterance
basis. This real-time processing capacity un-
derpins participant coordination in conversation

1All relevant code, models, and data are available
at https://bitbucket.org/dylandialoguesystem/
dsttr/src/dsttr_arash_a/

(Gregoromichelaki et al., 2012, 2020) and leads
to many characteristic phenomena such as split-
utterances (Poesio and Rieser, 2010; Purver et al.,
2009), mid-utterance feedback in the form of
backchannels (Heldner et al., 2013) or clarification
requests (Healey et al., 2011; Howes and Eshghi,
2021), hesitations, self-repairs (Schegloff et al.,
1977) and more.

Language generation – our focus here – is just
as incremental as language understanding: speak-
ers normally do not have a fully formed concep-
tualisation or plan of what they want to say before
they start articulating, and conceptualisation needs
only to be one step ahead of generation or articu-
lation (Guhe, 2007; Levelt, 1989). This is possible
because speakers are able to continuously monitor
the syntax, semantics, and the pragmatic appropri-
ateness of their own contribution (Levelt, 1989) in
the fast, dynamically evolving context of the con-
versation. In turn this allows them to pivot or cor-
rect themselves on the fly if needed, e.g. because
they misarticulate a word, get feedback from their
interlocutors (Goodwin, 1981), or else the genera-
tion goal changes due to the dynamics of the envi-
ronment.

Real-time language processing is likewise cru-
cial in designing dialogue systems that are more
responsive, more naturally interactive (Skantze
and Hjalmarsson, 2010; Aist et al., 2006), and are
more accessible to people with memory impair-
ments (Addlesee et al., 2019; Addlesee and Da-
monte, 2023; Nasreen et al., 2021). Despite this
importance, relative to turn-based systems, it has
received little attention from the wider NLP com-
munity; perhaps because it has deep implications
for the architecture of such systems (Schlangen
and Skantze, 2009; Skantze and Schlangen, 2009;
Kennington et al., 2014), which make them much
harder to build and maintain.

In this paper, we extend the work of Purver
and Kempson (2004); Hough and Purver (2012);

https://bitbucket.org/dylandialoguesystem/dsttr/src/dsttr_arash_a/
https://bitbucket.org/dylandialoguesystem/dsttr/src/dsttr_arash_a/
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Hough (2015), who lay the theoretical foundations
for incremental generation and later the process-
ing of self-repairs in Dynamic Syntax (Kempson
et al., 2001, 2016, Sec. 2.3). For the first time, we
develop a probabilistic model for incremental gen-
eration (Sec. 3) that conditions next word selection
on the current incrementally unfolding context of
the conversation, and also on features of a purely
semantic generation goal concept, expressed as a
Record Type (RT) in Type Theory with Records
(Cooper, 2012; Cooper and Ginzburg, 2015). The
model is trained and evaluated on part of the
CHILDES corpus (MacWhinney, 2000) using an
extant grammar that was learned by Eshghi et al.
(2013) from the same data. Results show that
in the best case, the model output matches the
gold generation test candidate in 83% of cases
(Sec. 4.2). We then go on to experiment with and
evaluate the ability of the same model to gener-
ate self-repairs in a zero-shot setting in the face
of revisions to the goal concept RT under vari-
ous conditions (Sec 4.3): viz. for forward-looking
and backward-looking repair and at different dis-
tances from the reparandum. Automatic evalua-
tion shows that it can generate self-repairs cor-
rectly in 85% of cases. A small human evalu-
ation confirms the overall naturalness and gram-
maticality of the generated repairs. Overall, these
results further highlight the generalisation power
of grammar-based models (see also Mao et al.
(2021); Eshghi et al. (2017) and lay the founda-
tions for more controllable, and naturally interac-
tive conversational AI systems.

2 Dynamic Syntax and Type Theory with
Records (DS-TTR)

Dynamic Syntax (DS, Kempson et al., 2016; Cann
et al., 2005; Kempson et al., 2001) is a process-
oriented grammar formalism that captures the
real-time, incremental nature of the dual processes
of linguistic comprehension and production, on a
word by word or token by token basis. It mod-
els the time-linear construction of semantic rep-
resentations (i.e. interpretations) as progressively
more linguistic input is parsed or generated. DS
is idiosyncratic in that it does not recognise an in-
dependent level of structure over words: on this
view syntax is sets of constraints on the incremen-
tal processing of semantic information.

The output of parsing any given string of words
is thus a semantic tree representing its predicate-

argument structure (see Fig. 1). DS trees are al-
ways binary branching, with argument nodes con-
ventionally on the right and functor nodes to the
left; tree nodes correspond to terms in the lambda
calculus, decorated with labels expressing their se-
mantic type (e.g. Ty(e)) and formulae – here as
record types of Type Theory with Records (TTR,
see Sec. 2.1 below); and beta-reduction deter-
mines the type and formula at a mother node from
those at its daughters (Fig. 1). These trees can be
partial, containing unsatisfied requirements poten-
tially for any element (e.g. ?Ty(e), a requirement
for future development to Ty(e)), and contain a
pointer, ♢, labelling the node currently under de-
velopment.

Grammaticality is defined as parsability in a
context: the successful incremental word-by-word
construction of a tree with no outstanding re-
quirements (a complete tree) using all information
given by the words in a string. We can also dis-
tinguish potential grammaticality (a successful se-
quence of steps up to a given point, although the
tree is not complete and may have outstanding re-
quirements) from ungrammaticality (no possible
sequence of steps up to a given point).

Fig. 1 shows “John arrives”, parsed incremen-
tally, starting with the axiom tree with one node
(?Ty(t)), and ending with a complete tree. The in-
termediate steps show the effects of: (i) DS Com-
putational Actions (e.g. Completion which moves
the pointer up and out of a complete node or An-
ticipation which moves the pointer down from the
root to its functor daughter.) which are language-
general and apply without any lexical input when-
ever their preconditions are met; and (ii) Lexical
Actions which correspond to words and are trig-
gered when a word is parsed.

Context In DS, context, required for process-
ing various forms of context-dependency – in-
cluding pronouns, VP-ellipsis, and short answers,
as well as self-repair – is the parse search Di-
rected Acyclic Graph (DAG), and as such, is also
process-oriented. Edges correspond to DS actions
– both Computational and Lexical Actions – and
nodes correspond to semantic trees after the appli-
cation of each action (Sato, 2011; Eshghi et al.,
2012; Kempson et al., 2015). Here, we take a
coarser-grained view of the DAG with edges cor-
responding to words (sequences of computational
actions followed by a single lexical action) rather
than single actions, and we drop abandoned parse
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?Ty(t)
intro-pred; “john”

?Ty(t)

Ty(e),⟨↓⟩�,♢
[ x= john ∶ e

head=x ∶ e ]
?Ty(e→ t)

completion; anticip; “arrives”;
completion; beta-reduce

♢,Ty(t),

⎡⎢⎢⎢⎢⎢⎢⎣

x= john ∶ e
e=arrive ∶ es

p=sub j(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎦

Ty(e), ⟨↓⟩�,
[ x= john ∶ e

head=x ∶ e ]

Ty(e→ t),
λr ∶ [ head ∶ e ] .
⎡⎢⎢⎢⎢⎢⎢⎣

x=r.head ∶ e
e=arrive ∶ es

p=sub j(e,x) ∶ t
head=p ∶ t

⎤⎥⎥⎥⎥⎥⎥⎦

Figure 1: Incremental parsing in DS-TTR: “John arrives”

paths (see Eshghi et al., 2015; Howes and Eshghi,
2021, for details) – Fig. 4 shows an example.

2.1 Type Theory with Records (TTR)
Dynamic Syntax is currently integrated with TTR
(Cooper, 2012, 2005) as the semantic formalism in
which meaning representations are couched (Es-
hghi et al., 2012; Purver et al., 2011, 2010)2.

TTR is an extension of standard type theory, and
has been shown to be useful in contextual and se-
mantic modelling in dialogue (see e.g. Ginzburg,
2012; Fernández, 2006; Purver et al., 2010, among
many others), as well as the integration of per-
ceptual and linguistic semantics (Larsson, 2013;
Dobnik et al., 2012; Yu et al., 2017). With its
rich notions of underspecification and subtyping,
TTR has proved crucial for DS research in the in-
cremental specification of content (Purver et al.,
2011; Hough, 2015); specification of a richer no-
tion of dialogue context (Purver et al., 2010); mod-
els of DS grammar learning (Eshghi et al., 2013);
and models for learning dialogue systems from
data (Eshghi et al., 2017; Kalatzis et al., 2016; Es-
hghi and Lemon, 2014).

In TTR, logical forms are specified as record
types, which are sequences of fields of the form
[ l ∶ T ] containing a label l and a type T .
Record types can be witnessed (i.e. judged true)
by records of that type, where a record is a se-
quence of label-value pairs [ l = v ]. We say that
[ l = v ] is of type [ l ∶ T ] just in case v is of
type T . Fields can be manifest, i.e. given a sin-
gleton type e.g. [ l ∶ Ta ] where Ta is the type of
which only a is a member; here, we write this as
[ l=a ∶ T ]. Fields can also be dependent on fields
preceding them (i.e. higher) in the record type (see
Fig. 2).

2DS models the structural growth of representations and
is agnostic to the formalism for semantic representation. As
such, it has also been combined with RDF (Addlesee and
Eshghi, 2021) and with vector-space representations (Purver

R1 ∶
⎡⎢⎢⎢⎢⎢⎣

l1 ∶ T1
l2=a ∶ T2
l3=p(l2) ∶ T3

⎤⎥⎥⎥⎥⎥⎦
R2 ∶ [

l1 ∶ T1
l2 ∶ T2′

] R3 ∶ []

Figure 2: Example TTR record types

The standard subtype relation ⊑ can be defined
for record types: R1 ⊑ R2 if for all fields [ l ∶ T2 ]
in R2, R1 contains [ l ∶ T1 ] where T1 ⊑ T2. In
Fig. 2, R1 ⊑ R2 if T2 ⊑ T2′ , and both R1 and R2 are
subtypes of R3. This subtyping relation allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information and/or constraints.

Additionally, Larsson (2010) defines the meet
(�) operation of two (or more) RTs as the union of
their fields; the equivalent of conjunction in FoL;
see figure 3 for an example. We will need this
below (Sec.3) where we define our probabilistic
model.

[ l1 ∶ T1
l2 ∶ T2

]� [
l2 ∶ T2
l3 ∶ T3

] =
⎡⎢⎢⎢⎢⎢⎣

l1 ∶ T1
l2 ∶ T2
l3 ∶ T3

⎤⎥⎥⎥⎥⎥⎦

Figure 3: Example of merge operation between two
RTs

2.2 Generation in DS-TTR
As alluded to in the introduction, to handle typ-
ical incremental phenomena in dialogue such as
split utterances, interruptive clarification requests
or self-repair, any generation model must be as in-
cremental as interpretation: full syntactic and se-
mantic information should be available after gen-
erating every word with continual access to the in-
crementally unfolding context of the conversation
(Hough and Purver, 2012; Eshghi et al., 2015).

et al., 2021)
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In generation, there is an extra requirement on
models, namely representational interchangabil-
ity (Eshghi et al., 2011): parsing and generation
should employ the same mechanisms and use the
same kind of representation so that parsing can
pick up where generation left off, and vice versa.

DS-TTR can meet these requirements, because
generation employs exactly the same mechanisms
as in parsing (Purver and Kempson, 2004) with the
simple addition of a subsumption check against a
generation goal concept, expressed as a Record
Type (RT) in TTR (see Sec. 2.1); and where this
goal concept can be partial (does not need to cor-
respond to a complete sentence), and need only
to be one step ahead of the generated utterance so
far. This ease of matching incrementality in both
generation and parsing is not matched by other
models aiming to reflect incrementality in the dia-
logue model while adopting relatively conserva-
tive grammar frameworks, some matching syn-
tactic requirements but without incremental se-
mantics (Skantze and Hjalmarsson, 2010), others
matching incremental growth of semantic input
but leaving the incrementality of structural growth
unaddressed (Guhe, 2007).

As such, generation involves lexical search
whereby at every step, words from the lexicon
are test-parsed in order to find words that (i) are
parsable in the current context; and (ii) the re-
sulting TTR semantics of the current DS tree sub-
sumes or is monotonically extendable the genera-
tion goal. The subsumption relation is the inverse
of the subtype relation defined above (see Sec. 2.1;
i.e. R1subsumes R2 iff R2 ⊑ R1).

Without a probabilistic model for word selec-
tion at each step of generation, this process is ef-
fectively brute-force, computationally very ineffi-
cient, and therefore simply impractical, especially
with large lexicons. This is the shortcoming that
we address here for the first time by condition-
ing word selection on the generation goal RT. This
involves learning, through Maximum Likelihood
Estimation from data, P(w∣T,Rg), where w ranges
over the lexicon, T is the current DS tree includ-
ing its maximal semantics, and Rg is the genera-
tion goal. This parametrisation is described in full
below in Sec. 3.

2.3 Processing Self-repair in DS-TTR
In this section, we briefly introduce the DS model
of self-repair from (Hough and Purver, 2012):

there are two types of self-repair that are ad-
dressed: backward-looking repair (aka. overt re-
pair), where the repair involves a local, and partial
restart of the reparandum, as in (1) and forward-
looking repair (aka. covert repair) where the repair
is simply a local extension, i.e. a further specifica-
tion of the reparandum as in (2).

(1) “Sure enough ten minutes later the bell r-the
doorbell rang" (Schegloff et al., 1977)

(2) “I-I mean the-he-they, y’know the guy, the
the pathologist, looks at the tissue in the
microscope. . . ” (Schegloff et al., 1977)

In the model set out above, a backward-looking
repair arises due to an online revision of a gener-
ation goal RT, whereby the new goal is not a sub-
type of the one the speaker (or the dialogue man-
ager) had initially set out to realise. We model this
via backtracking along the incrementally available
context DAG as set out above. More specifically,
repair is invoked if there is no possible DAG exten-
sion after the test-parsing and subsumption check
stage of generation (resulting in no candidate suc-
ceeding word edge).

The repair procedure proceeds by restarting
generation from the last realised (generated) word
edge. It continues backtracking by one DAG ver-
tex at a time until the root record type of the cur-
rent partial tree is a subtype of the new goal con-
cept. Generation then proceeds as usual by extend-
ing the DAG from that vertex. The word edges
backtracked over are not removed, but are simply
marked as repaired (see also Eshghi et al. (2015)
for a fuller account), following the principle that
the revision process is on the public conversational
record and hence should still be accessible for later
anaphoric reference (see Fig. 4).

Forward-looking repairs on the other hand, i.e.
extensions, where the repair effects an “after-
thought” are also dealt with straightforwardly by
the model. The DS-TTR parser simply treats these
as monotonic extensions of the current tree, result-
ing in subtype extension of the root TTR record
type. Thus, a change in goal concept during gen-
eration will not always put demands on the sys-
tem to backtrack, such as in generating the frag-
ment after the pause in “I go to Paris . . . from Lon-
don". Backtracking only operates at a semantics-
syntax mismatch where the revised goal concept is
no longer a subtype of the root record type for the
(sub-)utterance so far realised, as in Figure 4.
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Figure 4: Incremental DS-TTR generation of a self-repair upon change of goal concept. Type-matched record
types are double-circled nodes and edges indicating failed paths are dotted.

3 Probabilistic Model of Generation

In this section, we follow on from Sec. 2.3 above
and describe the probabilistic model that we have
developed for incremental probabilistic genera-
tion. First we describe the model itself, its parame-
ters, and how these are estimated from data. Then
we describe how the model is used at inference
time to generate.

Model and Parameter Estimation As noted,
generation in Dynamic Syntax is defined in terms
of parsing. Specifically, it proceeds via lexical
search, i.e. test-parsing (all) words from the lex-
icon while checking for subsumption against the
goal concept: a record type (RT) in TTR; hence-
forth Rg. Words that parse successfully with a re-
sulting (partial) semantics that subsume the goal
concept are successfully generated. This process
goes on until the semantics of the generated sen-
tence equals the goal. This process is highly inef-
ficient and impractical for larger lexicons.

On a high level, we solve this problem by build-
ing a probabilistic model which conditions the
probability of generating the next word, w, on: (i)
Rcur: the semantics of the generated utterance thus
far; (ii) Rg, the goal concept; and (iii) the current
DS tree (henceforth Tcur). We condition on (i) to
allow the model to keep track of the semantics of
what’s already been generated, i.e. the left seman-
tic context of generation; on (ii) to aid the model in
selecting words that contribute the correct seman-
tic increments to approach the goal concept; and
on (iii) to capture the syntactic constraints on what
words can grammatically follow. In sum, we need

to compute P(w∣Tcur,Rcur,Rg) for all the words w
in the lexicon.

As you will see below, we learn to generate by
parsing, and therefore we the use Bayes rule in
Eq. 3 to cast probabilistic generation roughly in
probabilistic parsing terms:

P(w∣Tcur,Rcur,Rg)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
probabilistic generation

Bayes Rule=

probabilistic parsing
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P(Tcur,Rcur,Rg∣w)P(w)

P(Tcur,Rcur,Rg)

(3)

On the right hand side of Eq. 3, P(w) is the
prior probability of w, which we obtain from
the frequency of w in our training data; and
P(Tcur,Rcur,Rg) a normalisation constant which
we do not need to estimate.

We learn P(Tcur,Rcur,Rg∣w) from gold data in
the form of ⟨Utt = ⟨w1, . . . ,wN⟩, Rg⟩, where Utt is
the utterance to be generated, and Rg is its gold se-
mantics. To do this, we use the DS parser to parse
Utt yielding a parse path (see e.g. Fig. 4) that
starts with the DS axiom tree (empty tree) to the
tree whose semantics is Rg together with all the DS
trees produced after parsing each wi in between;
viz. a sequence S p = {⟨T1,w1⟩, . . . , ⟨TN ,wN⟩},
where Ti are the DS trees in the context of
which the wi’s were parsed. This sequence con-
stitutes the observations from which we estimate
P(Tcur,Rcur,Rg∣w) by Maximum Likelihood Esti-
mation (MLE).

Tcur, Rcur and Rg are all composed of many indi-
vidual features, and as a whole, would be observed
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very rarely. Therefore, for generalisation, we need
to decompose them and compute the probability
of the whole as the conjunction (product) of the
probabilities of their individual atomic features.

For Tcur we follow Eshghi et al. (2013) and con-
sider only one feature of Tcur: that of the type of
the pointed node, or a requirement for a type (e.g.
Ty(e), ?Ty(e → t), etc) – call this Typ. This sim-
plifies the model considerably, but has the down-
side of not capturing all grammatical constraints
(e.g. person constraints in English verbs will not
be captured this way), and leading to some over-
generation.

We also simplify the model by conditioning on
the semantics that remains to be generated – call
it Rinc – rather than conditioning on both Rcur and
Rg. We can compute Rinc each time through the
well-defined record type subtraction operation in
TTR where: Rinc = Rg/Rcur.

With these simplifications, what we need to esti-
mate by MLE from each sequences S p (see above)
is: P(Typ,Rinc∣w).

As noted, for any generalisation at all, Rinc now
needs to be decomposed into its individual atomic
features so that we can compute the probability of
each of these features individually, rather than that
of Rinc as a whole. We decompose Rinc as follows:
Rinc = �k(Rk), where � is the TTR equivalent
of the conjunction operation in FoL (see above,
Sec. 2.1); and each Rk is potentially dependent on
R j where j < k.

Using the probabilistic variant of TTR (Cooper
et al., 2013, 2014), we can use the chain rule to
then derive Eq. 4:

P(	
k

Rk∣w) = ΠkP(Rk∣w,R1	 . . .	Rk−1) (4)

This then allows us to express the probability
of a complex record type in terms of the product
of its potentially dependent, atomic supertypes.
This, finally, puts us in a position to compute
P(Typ,Rinc∣w) as follows:

P(Rinc,Typ∣w)
independence= P(Rinc∣w) ⋅ P(Typ∣w)
decompose Rinc= P(	

k
Rk∣w) ⋅ P(Typ∣w)

We implement the above procedure by con-
structing a 2D conditional count table where the
rows are the words, and the columns are all the
atomic semantic features observed during learn-
ing by parsing: effectively the result of decom-
posing all the Rg’s in our data; this, in addition

to all the Typ features we have observed on all the
DS trees encountered in the S p sequences above.
Then, each time we observe an atomic semantic
feature of Rinc, say, Rk, in the context of a word, w,
we increment the cell (Rk,w) by 1. After learning,
we normalise the columns of the table to obtain all
P(F∣w) where F ranges over all semantic features
and pointed node types, and w over all words in
the lexicon.

Inference At inference time, we need to esti-
mate P(w∣Tcur,Rcur,Rg): a probability distribu-
tion over all the words in the lexicon, given the
current context of generation, Tcur including the
current semantics so far generated, Rcur, and the
goal concept, Rg. Given the above we take the
following steps to populate a beam for generat-
ing the next word: (i) compute Rinc = Rg/Rcur; (ii)
compute all the atomic semantic features, Rk – the
headings in the columns in our conditional proba-
bility table – that Rinc triggers or ‘turns on’. This
can be done by checking whether Rinc ⊑ Rk; (iii)
compute the single Typ (type of pointed node) fea-
ture by observing the type of the pointed node on
Tcur; (iv) for each row (i.e. each word) take the
product (or sum of log probabilities) of all the col-
umn features thus triggered in steps (ii) and (iii);
(v) sort the words in the lexicon by their probabil-
ity from (iv) and have the top N fill the beam of
size N.

Once the beam is thus populated, we use the DS
grammar to parse each word in the beam in turn;
upon success, that is, if the word is parsable, and
the resulting semantics subsumes the goal concept,
Rg, we move on to generate the next word incre-
mentally until we reach the goal concept, that is,
until Rg ⊑ Rcur ∧ Rcur ⊑ Rg.

Repair mechanism The DS repair mechanism,
i.e. that of backtrack and parse / generate (see
above Sec. 2.3), is triggered when none of the
words in the beam successfully generate; either
because neither are parsable, or else their resulting
semantics don’t subsume Rg (because it may have
been revised). When triggered, the model back-
tracks over the context DAG path (see above), and,
following the same inference process, attempts to
(re-)populate the beam and generate from there.
Backtracking continues until generation is suc-
cessful, with the model having generated the in-
terregnum (e.g. "I mean", "sorry I mean", "uh",
"no", etc.) before it generates the first repair word.
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Generation continues normally from that point un-
til the (potentially new) goal concept is reached.

4 Evaluation

4.1 Data
The data to train and test our model comes
from the Eve section of the CHILDES corpus
(MacWhinney, 2000). This section was anno-
tated with logical forms (LF) by Kwiatkowski
et al. (2012). The LFs were then converted to
TTR record types (RT) by Eshghi et al. (2013).
This dataset consists of utterances towards chil-
dren from parents, therefore the sentences have
a relatively simple structure than adult language.
We will use it in the shape of ⟨Utterance, Goal
Concept⟩ pairs to train and test our model.

For training our generator, we test-parsed the
dataset using two versions of the grammar learned
by Eshghi et al. (2013): the grammar containing
the top 1 hypothesis and the grammar containing
the top 3. This resulted in two subsets of the data
that could be parsed and in which the produced
RT semantics matched the gold semantics exactly.
Let’s call these top-1 and top-3 respectively. We
report their relevant statistics in Table 1.

dataset total
samples

total
words

mode
length

max
length

type /
token
ratio

top-1 729 2152 3 7 18.08
top-3 1361 4194 3 7 21.96

Table 1: Filtered Dataset Statistics

However, even as the top-3 grammar from Es-
hghi et al. (2013) gives wider parsing coverage, it
included many erroneously learned lexical actions.
We therefore decided to carry out our experiments
below on the top-1 dataset filtered using the top-1
grammar. This is at the expense of not generating
sentences that we’d otherwise be able to generate
since the overall distribution of the two datasets
are similar. Therefore, the results we report be-
low are more conservative (i.e. lower) than those
we’d have been able to achieve if we’d manually
cleaned up the top-3 grammar and applied it to
learning and generation.

4.2 Model Evaluation
We evaluate our generation model on the top-1
set in two ways: (i) standard evaluation of gener-
ation without any mid-generation revisions to the
goal; (ii) we evaluate the capability of the same

model to generalise to cases where the goal con-
cept is revised mid-generation, i.e. to cases where
the model needs to produce self-repairs.

Standard evaluation For this, we report per-
centage of exact match (EM), ROUGE-1, Rouge-
2, and ROUGE-l between the gold sentences in the
dataset and the output sentences from the model.
On the training set, we could observe that out of
656 training samples, we can generate 597 utter-
ances (91.01%) whose semantics exactly matches
the generation goal concept; 416 of these fully
match the gold sentence, yielding an EM score of
0.6341 (meaning 63.41% of the output sentences
fully match the gold sentences). For the test set,
out of 73 total samples, 64 sentences were gener-
ated fully to the goal concept (87.67%), and 46 of
these (63.01%) completely matched the gold sen-
tence in the dataset. Among the outputs not fully
match by the gold sentences a large portion of
them are very close to an exact match. For exam-
ple the generated sample, “what is that", where the
gold sentence is “what’s that": such samples were
not counted initially among the exact matches. We
then took these to be exact matches and recom-
puted evaluation scores. The final results are sum-
marised in Table. 2.

EM ROUGE-1 ROUGE-2 ROUGE-l
Train 0.84 0.94 0.71 0.92
Test 0.78 0.88 0.67 0.86

Table 2: Evaluation results for generation without any
goal concept revisions

4.3 Generating self-repairs: a zero-shot
evaluation

To evaluate the ability of the model to generate
self-repairs in a zero shot setting, we generate
a dataset of semantic revisions to the goal con-
cept using the original top-1 data. We use the
Stanford POS tagger to automatically generate a
set of revisions, where each revision is a tuple,
⟨Rg, index,Rr,Uttr, f orward⟩: Rg: is the origi-
nal goal concept; index: is the position along the
generation path where the revision takes place;
Rr: is the revised goal; Uttr: is the result of re-
placing a single word in the original gold utter-
ance with a word from our data of the same POS
– Rr now corresponds to the (revised goal) se-
mantics of Uttr; and, finally: f orward: is either
true or false, marking whether the revised seman-
tic material has already been contributed before
index or not; if true, we would expect a forward-
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looking self-repair, and otherwise a backward-
looking one (see Sec. 2.3 above). We derive these
revision tuples for every utterance in the dataset
with length greater than 4, and on the following
Parts of Speech: {NOUN, ADJ, PROPN, ADP,
ADV}. These tuples therefore give us 4 experi-
mental conditions, across two binary factors: (i)
locality: is the point at which the revision is made
strictly local to the repairandum; or does it have
a distance of more than 1; (ii) Is the revision af-
ter or before the corresponding semantic contribu-
tions have been made?

We then run the revisions through the model and
evaluate the output automatically as follows: we
use a simple rule-based algorithm to ‘clean out’
the self-repair from the model output, and com-
pare this to the revised utterance, Uttr. For this
comparison, we only report EM – see Table 3. We
observed 641 of the generatable revisions in total
are an exact match.

forward-looking backward-looking
local 0.93 0.89

distant 0.73 0.82

Table 3: EM for zero-shot evaluation of repairs
Since we do not have gold data for self-repairs,

we did a small human evaluation on the model out-
put: the authors each independently annotated a
subset of 30 examples, assigning scores on a Lik-
ert scale from 1 to 3 for: (a) grammaticality of the
self-repairs; and (b) their human-likness or nat-
uralness, which initially led to a low agreement.
They then met to discuss the disagreements in or-
der to iron out the differences between the criteria
they had applied. They then continued to annotate
70 additional system outputs. This led to a Krip-
pendorff’s alpha score of 0.88 for grammaticality
and 0.82 for naturalness, demonstrating very high
agreement. To then report the average scores given
by the human annotators, the lower score was cho-
sen when there was a disagreement, resulting in
2.72 and 2.28 mean scores for grammaticality and
naturalness respectively, confirming the quality of
the generated output.

5 Discussion

During the error analysis we observed the follow-
ing error patterns: In the standard evaluation of
generation, there were 199 instances where the
model had fully generated to the goal concept,
while the generated output did not match the gold

utterance. Many were cases where the model had
generated a statement instead of a question or vice
versa (e.g. "I may see them" is generated over
"may I see them"). In a few cases, the generated
output was ungrammatical with the wrong word
order: both of these are caused by the original
grammar from Eshghi et al. (2013) overgenerat-
ing – this is acknowledged by the authors, and it is
due to the fact that their induced grammar did not
capture the full set of syntactic constraints present
in their data. This is in turn because they were
only conditioning their search on the type of the
pointed node, like we do here. Inducing the full
set of syntactic constraints was left to future work,
as it is here.

5.1 Limitations
Our evaluation in this paper has at least two im-
portant limitations:

(1) We evaluate our incremental generation
model on a small, and relatively simple dataset
(leading to high ROUGE scores because of the lit-
tle variation in data and relative similarity between
training and testing sets) due to the fact that we
currently do not have access to a wider coverage
grammar. However, this was a conscious choice
on the authors’ part: we used a learned gram-
mar to induce our probabilistic generation model
and evaluated it on exactly the same dataset from
which the grammar was learned (Eshghi et al.,
2013). This was deemed to be methodologically
both sounder and cleaner than, say, use of a manu-
ally constructed grammar. We also believe that the
probabilistic model we have contributed here will
generalise to larger, more complex datasets when
wider-coverage grammars becomes available. We
leave this for future work.

(2) Perhaps more importantly, we have no com-
parative evaluation, and this in a climate where
neural NLG has seen astonishing advances in
the work on Transformer-based (large) Language
Models. To carry out this comparative evaluation,
we need to integrate our model with a downstream,
and, ideally, multimodal dialogue task (see e.g. Yu
et al. (2016, 2017) for how DS-TTR can be inte-
grated within a visually grounded task). This re-
quires substantial further work which is our next
step.

5.2 Why a grammar-based approach?
It might reasonably be asked why we are using a
grammar-based approach in the age of Large Lan-
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guage Models (LLM) such as GPT-4 and a large
number of other, open source models following.
These models are astonishing few-shot learners,
and have recently achieved great successes that
few thought possible (e.g. in open-domain dia-
logue, conversational question answering, essay
writing, summerisation, translation etc), and are
changing the human world in ways that we have
not yet had time to grasp.

Nevertheless, for the moment, the fact remains
that: (a) these models are extremely costly to train
and run due their sheer size and the amount of re-
sources (data, compute power, energy) needed to
train them; it’s also been demonstrated, time and
again, that they have poor compositional generali-
sation properties (see Pantazopoulos et al. (2022);
Nikolaus et al. (2019) among others), which ex-
plains much of their characteristic data ineffi-
ciency; (b) they are very difficult to control and/or
adapt while often producing factually incorrect
statements, commonly referred to as hallucina-
tions (Rashkin et al., 2021; Dziri et al., 2022) using
very convincing language – this extends to con-
fident prediction of erroneous actions or plans in
multi-modal, embodied settings; (d) they are very
hard to sufficiently verify, making them unsuitable
for use in safety-critical domains such as health-
care; (e) particularly important for us here, un-
like recurrent models such as RNNs and LSTMs,
standard Transformer-based neural architectures
(Vaswani et al., 2017) are not properly incremen-
tal – even the auto-regressive variants such as GPT
– in the sense that they process word sequences
as whole, rather than word by word; they can be
run under an ‘incremental interface’ (Madureira
and Schlangen, 2020; Rohanian and Hough, 2021)
where input is reprocessed from the beginning
with every new token, but even then, they ex-
hibit poor incremental performance with unstable
output compared to e.g. LSTMs (Madureira and
Schlangen, 2020). Interesting recent work has ex-
plored using Linear Transformers (Katharopoulos
et al., 2020) with recurrent memory to properly in-
crementalise LMs (Kahardipraja et al., 2021a), but
this work is as yet in its infancy, and we do not yet
know of any work that integrates LMs end to end
within a real-time, incremental dialogue system.

On the other hand, grammar-based approaches
have the advantage of being highly controllable
and transparent; but crucially, they incorporate the
very large wealth of linguistic knowledge that has

arisen from decades of linguistics and semantics
research. This knowledge has been demonstrated
to be a very effective source of inductive bias in
grammar-based models which in turn translates
to remarkable generalisation potential, and thus
also data efficiency (see e.g. Mao et al. (2021)
for a CCG-based multi-modal model, and Eshghi
et al. (2017) for a DS-TTR-based one) – see Es-
hghi et al. (2022) for an extended discussion. One
common criticism is that grammar-based models
are brittle. This is often true, but we do not be-
lieve this to be a fundamental property, and think
that specific grammars of a language are adaptable
and learnable from interaction. But much work re-
mains to be done to demonstrate this property.

For these reasons, we believe that grammar-
based approaches hold promises that are as yet un-
fulfilled, and are therefore still worth exploring in
parallel to the much needed work on making LM
architectures and training regimes more incremen-
tal (see Kahardipraja et al. (2021b, 2023)).

6 Conclusion

We developed the first semantic, probabilistic
model of real-time language generation using the
Dynamic Syntax framework. The results show
that the model performs well, even though we
evaluated it only on a small dataset. We also
demonstrated the zero-shot generalisation ability
of the model to generate self-repairs where none
were observed during training. To our knowledge,
this is the first model capable of reacting to real-
time changes to the generation goal by generat-
ing suitable self-corrections. This ability is essen-
tial in dialogue systems in highly dynamic con-
texts or environments. Our generation model can
be seamlessly integrated into incremental dialogue
system architectures (e.g. based on Schlangen
and Skantze (2009)). This work further high-
lights the generalisation power of grammar-based
approaches, and lays the foundations for creating
conversational AI systems that are controllable,
data-efficient, more naturally interactive, and more
accessible to people with cognitive impairments.
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