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Abstract (Peskov et al., 2019) and Facebook’s Dialogue Do-

decathlon (Shuster et al., 2020). However, none of
these datasets is also annotated with information
about the semantic and discourse interpretation of
utterances required to train modules for these tasks.

The objective of ARCIDUCA is to address the
twin challenge of developing conversational
agents (CAs) able to deal with coreference and
reference, and of creating datasets for training

such agents, by having CAs generate through The objective of ARCIDUCA is to develop conver-
interaction the needed training data, which can sational agents (CAs) able to deal with coreference
then be used to improve those agents as well and reference, and of creating datasets for training
as train agents for other domains. A core hy- such agents, by having the CAs themselves gen-
pothesis of the project is that the most effective erate through interaction the needed training data,

way to motivate enough individuals to partici-
pate in such interactions is by embedding these
interactions in online games-with-a-purpose.

which can then be used to improve those agents as
well as train agents for other domains.

1 Introduction 2 The approach

Datasets and Architectures for Coreference in
Dialogue Coreference is prevalent even in the
shortest conversations (Miiller, 2008; Quan et al.,
2019; Grobol, 2020). However, current neural ar-
chitectures for conversational agents mostly do not
resolve coreference. Such CAs can only react appro-
priately when generating the correct response does
not require understanding coreference. Part of the
problem is that despite impressive recent improve-
ments (Lee et al., 2017; Joshi et al., 2019), coref-
erence research is still mostly focused on written
text. This research gap is largely due to a lack of re-
sources. Training a coreference resolver on written
text and domain-adapting it to dialogue has proven
ineffective, as coreference in dialogue involves dif-
ferent phenomena and is more involved than coref-
erence in text (Miiller, 2008; Grobol, 2020). But
the largest annotated corpus of coreference in dia-
logue, the TRAINS subset of our own ARRAU cor-
pus (Uryupina et al., 2020), is too small to train
a high performance coreference resolver for CAs.
One objective of the project is to create more sub-
stantial datasets to study the problem. Also, there
is a need for CA architectures including specific
modules that enable them to interpret coreference.
Some such architectures have recently appeared,

'https://parl.ai/docs/tasks.html such as GECOR (Quan et al., 2019), based on a

The development of architectures such as the en-
coder/decoder model (Sutskever et al., 2014) and
the Transformer (Vaswani et al., 2017) has brought
about an explosion of interest in neural architec-
tures for conversational agents (CAs) (Vinyals and
Le, 2015; Bordes et al., 2017; Zhang et al., 2018;
Dinan et al., 2019b; Gao et al., 2019; Ram et al.,
2018; Dinan et al., 2019a). CA research has since
shifted towards CAs capable of engaging in more
complex and task-oriented dialogue such as restau-
rant booking (Bordes et al., 2017) or question an-
swering (Dhingra et al., 2017) . The results on
these tasks show that CAs carrying out more com-
plex tasks require the ability to carry out more in-
depth interpretation (Quan et al., 2019; Roller et al.,
2020). Achieving this requires, on the one hand, ar-
chitectures capable of carrying out such aspects of
interpretation, typically incorporating models of di-
alogue memory and representations of task-specific
knowledge (Sukhbaatar et al., 2015; Dinan et al.,
2019b). On the other end, training such models re-
quires appropriate resources. Recently, a number of
datasets have become available for end-to-end train-
ing of task-oriented CAs; these include the datasets
available through ParlAi,! Amazon’s MultiDOGO
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copying architecture that solves coreference as an
incomplete utterance restoration task. (Quan et al.,
2019) showed that adding a coreference resolver to
a task-oriented CA can substantially improve per-
formance. In the project we will experiment with
such architectures.

Games with a Purpose Games with a Purpose
(GWAPs) (von Ahn, 2006) have emerged as an al-
ternative to traditional micro-task crowdsourcing
(Snow et al., 2008). GWAPs, particularly when run
over large periods, can collect large amounts of an-
notations: e.g., our own Phrase Detectives (Poesio
et al., 2013), designed to collect labels for coref-
erence, accumulated over 5.7 million coreference
judgments from more than 60,000 players over the
last fifteen years; the third release of the corpus
has now 400,000 markables, twice the number of
ONTONOTES. But there is a fundamental difference
between conversation and written text: the latter
is designed to be read by third parties, whereas,
e.g., (Clark and Schober, 1989) have shown that
overhearers to a conversation only acquire a partial
understanding of what was said.

Games and AI In recent years, games have be-
come one of the most widely used platforms to test
progress on machine learning-based Al agent theo-
ries (Silver et al., 2016). This progress became vis-
ible when DeepMind AlphaGo (Silver et al., 2016)
mastered the GO game using a combination of
Monte Carlo Tree Search and Deep Learning, but
progress since has been accelerated through com-
petitions such as General Video Game Al (Perez
et al., 2019) and the development of platforms for
rapid experimentation such as MALMO (Johnson
et al., 2016) or Unity/ML (Juliani et al., 2018).

Collecting conversational data through con-
versational learning in games The dominant
paradigm for CAs training discussed above (pre-
training against an annotated corpus, followed by
fine-tuning via reinforcement learning through in-
teraction with other agents) is also the approach
used in Game AI, which recently led to an excit-
ing synergy between the two areas of AI, whereby
Game AI platforms would be used to train con-
versational agents as well. One example of this
synergy is the MALMO project at Microsoft (John-
son et al., 2016), a platform for training agents in
Minecraft which was extended to allow training of
conversational agents (Allison et al., 2018; Szlam
et al., 2019). More recently, Hockenmaier’s group

developed an extension of MALMO to allow con-
versational agents to learn to interact, and used the
extension to introduce the Minecraft Collaborative
Game Task (Narayan-Chen et al., 2019). In parallel
with this, Facebook launched project LIGHT (Ur-
banek et al., 2019)—an open platform for collecting
conversations in a very rich textual fantasy game
with extensive crowdsourced resources entirely de-
scribed in natural language. In ARCIDUCA, we
aim to train conversational agents able to interpret
coreference and reference by embedding them in
LIGHT and the Minecraft Collaborative Game.

Collecting judgments through clarification ques-
tions The obvious way to enable a CA to acquire
information about interpretation is by making it
able to ask clarification questions (CQs) as to that
interpretation (Purver et al., 2003). As far as we
know, this has not yet been attempted for corefer-
ence, or for CAs. The one proposal along these
lines we are aware of (Thomason et al., 2019) was
developed to learn grounded reference for robots.
What we propose to do is to adopt a similar strat-
egy for improving conversational agents in games’
ability to interpret both references and coreference,
but also recording these judgments in the form of
an annotated corpus.

3 Progress so far

The project officially started in February 2022, but
work started beginning of 2021 with the preparation
of the CODI-CRAC 2021 shared task on anaphora
resolution in dialogue (Khosla et al., 2021), a sec-
ond edition of which is currently running. One
of the outcomes of this work is the creation of
the CODI-CRAC corpus of anaphoric reference in
dialogue, covering four well-known domains in-
cluding AMI, LIGHT, PERSUASION and SWITCH-
BOARD, and is currently the largest such dataset for
English. A second outcome of the shared task has
been the development of the Universal Anaphora
scorer (Yu et al., 2022), currently being revised
to make it more suitable to score coreference in
dialogue, e.g., by allowing for discontinuous mark-
ables Next work was fine-tuning of a coreference
resolver for the LIGHT domain and its incorpora-
tion in a conversational agent for the LIGHT do-
main based on the poly-encoder architecture from
(Humeau et al., 2020).
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