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Abstract

Genus-differentia definitions exhibit the dual
nature of lexical semantic meaning—they incor-
porate both “hard” X is a Y relations between
words, as well as “soft” aspects of meaning
which can be supported or challenged by ob-
servation. Modeling such definitions as contri-
butions in dialogue requires that we accommo-
date the fluidity of linguistic resources, while
respecting the dual nature of the relations that
hold between lexical items. In this paper, we
use a Probabilistic Type Theory with Records
(ProbTTR) to characterise genus-differentia
definitions by describing the update they li-
cense to the common ground of a dialogue.

Metalinguistic dialogue is one way for speakers
to align on the meaning of words. This is common,
for example, between adults and child language
learners (Clark, 2007):

(1) a. Naomi: mittens.
b. Father: gloves.
c. Naomi: gloves.
d. Father: when they have fingers in them

they are called gloves and when they
are all put together they are called mit-
tens.

But such interactions also take place between adults
engaged in a joint activity (Brennan and Clark,
1996):

(2) a. A: A docksider.
b. B: A what?
c. A: Um.
d. B: Is that a kind of dog?
e. A: No, it’s a kind of um leather shoe,

kinda preppy pennyloafer.
f. B: Okay, got it.

In both of these examples, the participants have a
joint perceptual scene to help ground the meaning
of the word, but that need not always be the case.

Definition is also a common coordination strategy
in word meaning negotiations that take place on
text-based social media (Myrendal, 2019).

In this paper, we consider a particular definition
paradigm known as a genus-differentia definitions.
Consider the following (imagined) exchange be-
tween an expert ornithologist and aspiring birder:

(3) a. A: You know what a corvid is, right?
b. B: Yeah, sure. We have jays and crows

in the garden sometimes.
c. A: A raven is a large black corvid.
d. B: Oh, okay.

Each of the above examples can be analysed as
including a genus-differentia definition (Table 1).
Furthermore, it seems reasonable to expect that
each exchange results in some update to the com-
mon ground (Clark, 1996) of the participants.

Discussion of genus-differentia definitions can
be traced back at least as far as Aristotle.1 For Aris-
totle, each genus must be separated into species by
some external differentia. Some species, acting as
genera themselves, may be further differentiated
into subspecies. We adopt some of the language of
the Aristotelian tradition (genus, species, differen-
tia), but rather than metaphysics, we are interested
in genus-differentia definitions as a convention-
alised resource for linguistic agents to coordinate
on the meaning a word or phrase.

Genus-differentia definitions convey two kinds
of information about the definiendum:

1. taxonomical information – A X is a Y rela-
tionship between the genus and the definien-
dum

2. observational information – One or more
features that help to differentiate the definien-
dum from other species of the same genus

1See especially Books VI and VII of Topics.
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Ex. definiendum genus differentia
(1) mittens mittens ∨ gloves fingers are all put together
(2) docksider shoe leather

pennyloafer preppy
(3) raven corvid large, black

Table 1: Three examples metalinguistic coordination analysed as genus-differentia definitions. While (3) fits neatly
into the paradigm, the other two deviate somewhat. In (1), the genus is not explicitly stated, but can be taken to be a
join type encompassing both mittens and gloves (see Cooper and Larsson, 2009). In (2), two alternative definitions
are given, each with their own genus and differentia.

Marconi (1997) argues that there are two ways
for speakers to be competent with the use of a word.
Referential competence is the ability to map words
to individuals or events in the world. If someone
can identify a raven by sight (or by call, or by
observing its behavior), they might be considered
referentially competent with raven. This aspect of
competence seems to be what is mainly at issue
in the argument that at least some aspect of lex-
ical semantic meaning may be associated with a
perceptual classifier—a cognitive resource for iden-
tifying instances of a class, given some perceptual
input (Larsson, 2013; Schlangen et al., 2016). On
the other hand, inferential competence supports the
ability to draw inferences based on the use of a
word in context. In a community of bird watchers,
one might be expected to infer from an utterance
like I saw a raven that I saw a corvid. Someone
who doesn’t make that inference might be consid-
ered incompetent with the word raven, since part of
the meaning of raven that they are corvids. Formal
semantics in the Montagovian tradition, if it consid-
ers lexical semantics at all, focuses on inferential
aspects of meaning, for example with meaning pos-
tulates (Carnap, 1952; Zimmermann, 1999).

Genus-differentia definitions are interesting to
consider from the perspective of interaction be-
cause describing the result of grounding an utter-
ance like (3-c) requires a framework that accounts
for the dual nature of lexical meaning. We have
essentially two desiderata for the shared meaning
of raven that results from grounding (3-c):

D1 Raven is a species of the genus corvid.2 This
means two things: First, there is an intensional
inferential relation from species to the genus. That

2Since we are interested in lexical meaning, the taxonom-
ical information relevant to us is information about folk tax-
onomies, which are a resource for a particular community of
practice (Gumperz, 1972). Among botanists, a banana is a
species of berry while a strawberry is not. The opposite may
hold among cooks or in ordinary discourse.

is, there is no situation (actual or hypothetical) in
which something might not be a corvid given that it
is a raven, since the definition stipulates that being
a corvid is part of what it means to be a raven.
Second, being a raven is mutually exclusive with
each of the sibling species of corvid.3

D2 Given that something is a corvid, being large
and black (relative to corvids) is positive evidence
for being a raven. However, this does not mean
that ravens are a type of black thing. Any inference
from raven to large and black is defeasible (for
example, the speakers may entertain the possibility
of albino raven, even if it happens to be extension-
ally true that all ravens are black). Furthermore,
our account should accommodate the possibility
that some differentia are interpreted in a way that
is sensitive to the context given by the genus. For
the sake of example, we will assume that this is the
case for large but not for black.

Our analysis of (3) and therefore these desider-
ata is admittedly ad hoc. Indeed, the use of genus-
differentia definitions as a metalinguistic resource
is probably a source of variation across different
communities of practice. The analysis that leads
to these desiderata is partly motivated by the very
fact that it requires us to distinguish between tax-
onomical and observational information about the
meaning of raven.

We will come back to these desiderata in Sec-
tion 4 after developing some formal machinery that
we can use to express them more precisely. Sec-
tion 1 introduces Probabilistic Type Theory with
Records (ProbTTR). Section 2 describes a way of
representing multiclass classifiers in ProbTTR, and
Section 3 describes classification systems, a kind
of ProbTTR type system that encodes a taxonomy

3Exactly what the sibling species are may be underspeci-
fied in the common ground. In this case, it includes at at least
jay and crow, given the context of (3-b). In other cases, the
relevant sibling species may be inferable from the differentia.
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with types that refer to multiclass classifiers for
their witness conditions. Finally, in Section 4, we
will put these tools together to give an analysis of
example (3).

1 Probabilistic Type Theory with Records

Probabilistic Type Theory with Records (ProbTTR)
is a type system that allows for probabilistic type
judgments of the form

p(a : T ) = r, (4)

where r ∈ [0, 1] is a real number. In settings where
the type system is a resource for (or models cog-
nitive processes of) an agent, (4) is taken to mean
that the agent judges entity a to be of type T with
probability r.4

Possibilities and witness conditions In
ProbTTR, witness conditions are used to compute
the probability that a given entity is of a given type.
For basic types, T ∈ BType, witness conditions
assign probability dependent on a possibility
external to the type system. A possibility can
be a set theoretic model (in which case the
witness conditions for basic types is one of set
membership) or it can, as in this paper, be based on
a collection of classifiers (see Section 3.2). Thus,
we write

p(a :M T ) = r (5)

to mean that a is of type T with probability r in
possibility M . Statements like (4) should only be
used for judgments that hold regardless of possibil-
ity, or as a shorthand where it is clear that only one
possibility is being considered.

We have not explicitly introduced a probabil-
ity space underlying type judgments. In general,
this may not be formally necessary (see Scott and
Krauss, 1966). However, if we did, the sample
space would be the set of all possible sets of pairs
of basic types and entities:

Ω = P(BType× Ind)

where, for A ∈ Ω, 〈T, a〉 ∈ A would mean that a
is of type T in outcome A.

As long as both BType and Ind are countable
(for the purposes of this paper, we may assume they
are finite), the distribution is discrete and there is no
difficulty in talking directly about the probability
of events.

4See Cooper et al. (2015) for a more complete introduction
to ProbTTR.

A key point that is elucidated by considering
the sample space of basic type judgments is that
probabilistic dependencies between type judgments
on basic types are entirely determined by M .

Conditional probability We may speak of the
conditional probability that an entity a is of type T1
given that it is of type T2, written p(a : T1 | a : T2).
If we wish to express the probability (in general)
that something is of type T1 given that it is of type
T2, this is written p(T1‖T2). The use of the double
stroke is to distinguish this expression from the
probability that something exists of type T1, given
that something exists of type T2, which is written
p(T1 | T2). These conditional probabilities are
understood extensionally, specific to a particular
possibility. If, for example, we know that penguins
only live in Antarctica, we would, for the types
Penguin (the type of situation in which there is a
penguin) and Antarctica (the type of situation in
Antarctica), judge p(Antartica‖Penguin) to be 1
(or close to 1) on the basis of this contingent fact.

Structured types The witness conditions of
structured types are a function of the structure of
the type and its components. For example, given
types T1 and T2, the meet type T1 ∧ T2 has, wit-
ness conditions based on the Kolmogorov (1950)
equation for conjunctive probability (Cooper et al.,
2015):

p(a : T1 ∧ T2) = p(a : T1) · p(a : T2 | a : T1)

= p(a : T2) · p(a : T1 | a : T2)

= p(a : T2 ∧ T1) (6)

In addition to types defined with ∧, ∨ and ¬,
ProbTTR defines record types as structured types—
given a record s and record type R, p(s : R) is a
function of type judgments of the fields of s (see
Cooper et al. (2015) for details).

1.1 Hard and soft relations between types

Subtype relation In TTR, T1 is said to be a sub-
type of T2, T1 v T2 if and only if anything of type
T1 is also of type T2 for any possibilityM , (Cooper,
forthc, p. 285). Extending this to ProbTTR, we can
say,

T1 v T2 iff p(a :M T1) ≤ p(a :M T2), (7)

for any entity a and possibility M .
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Naturally, it is not always necessary to check
these conditions explicitly.5 Subtype relations can
be implicit in the structure of the types, as in the
case of meet types. If T3 = T1 ∧ T2, by the def-
inition of the meet type we have T3 v T1 and
T3 v T2.

In other cases, whether two types stand in a sub-
type relation may depend on what is meant by all
possibilities. If we literally mean all possible as-
signments of probability to basic type-entity pairs,
then two basic types will never stand in a subtype
relation, since there will always be possibilities
where p(a :M T1) > p(a :M T2) and vice versa.

If, on the other hand, we restrict our attention
to some class of possibilitiesM, then subtype re-
lations between basic types are possible. Witness
conditions are one way to limit the possibilities
under consideration and can therefore introduce
probibalistic dependency between types.

Evidential relation We introduce a “soft” rela-
tion between types in ProbTTR, which captures the
notion that T2 is evidence for T1 in the context of
some type T ∗. Two types stand in this relation with
respect to T ∗ if learning that something is of type
T2 increases the probability that it is of type T1:

T1 ≺T ∗ T2 iff p(T1‖T ∗) < p(T1‖T2, T ∗) (8)

This relation is also contingent, relative to a partic-
ular possibility.

1.2 Representing probability distributions

In the next section, we will define a type for prob-
abilistic multiclass classifiers—that is, classifiers
that compute the probability that a given entity be-
longs to each of several mutually exclusive classes.
To that end, we must first encode discrete cate-
gorical probability distributions in TTR, since the
output of the classifier takes that form.

Larsson and Cooper (2021) introduce a type the-
oretic counterpart of a random variable in Bayesian
inference. To represent a single (categorical)
random variable with a range of possible (mu-
tually exclusive) values, ProbTTR uses a vari-
able type A whose range is a set of value types
R(A) = {A1, . . . , An}. We might have, for exam-
ple, R(Animal) = {Bird ,Reptile, . . . }.

5Indeed, it may not even be possible, depending on the
notion of possibility since the “extension” of types with wit-
ness conditions based on classifiers is indeterminate (Larsson,
2020b).

We will use short-hands Animal , Bird etc, for
the situation where some individual is an animal,
bird, etc.:

Animal =

[
x : Ind
c : animal(x)

]
Bird =

[
x : Ind
c : bird(x)

]
For a situation s, a probability distribution over

the m value types Aj ∈ R(A), 1 ≤ j ≤ m belong-
ing to a variable type A can be written (as above)
as a set of Austinian propositions, e.g.,

{

 sit = s
sit-type = Aj

prob = p(s : Aj )

 | Aj ∈ R(A)}

(10)
However, we will also have use for an alternative
representation of probability distributions, that in-
dexes the probability assigned to each type with a
unique label associated with the type:

idx({

sit = s
sit-type =Aj

prob = p(s : Aj )

 | Aj ∈ R(A)})

=

 lbl(A1) = p1
... =

...
lbl(An) = pn


where pj = p(s : Aj) and lbl(Aj) is a unique label
for Aj ∈ R(A). This means that for a set of prob-
abilistic Austinian propositions Ps, that concern a
situation s, idx(Ps). lbl(Aj) = pj = p(s : Aj).

2 Multiclass Classifiers in ProbTTR

In this section we extend the TTR classifier de-
fined by Larsson (2013) to give probabilistic type
judgments in multiclass setting.

Larsson (2013) shows how perceptual classifica-
tion can be modelled in TTR and Larsson (2020a)
reformulates and extends this formalisation to prob-
abilistic classification. Adapting the notation of a
probabilistic TTR classifier to the current setting, a
probabilistic perceptual (here, visual) classifier κA
corresponding to a variable type A provides a map-
ping from perceptual input (of type V e.g., a digital
image) onto a probability distribution over value
types in R(A), encoded as a set of probabilistic
Austinian propositions.
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We also want to explicitly parametrise our clas-
sifier. A classifier κA, would thus be a function of
type:

Π→ SitV → (11)

{

 sit : SitV
sit-type : RecTypeAi

prob : [0 , 1 ]

 | Ai ∈ R(A)}

where Π is the type of the parameters needed by
κA, and SitV is the type of situations where percep-
tion of some object yields visual information, and
where RecTypeR is the (singleton) type of records
identical to R, so that e.g.,

T : RecTypeBird iff T : RecType and T = Bird

We take classifiers to be part of word meanings.
We associate a word like "bird" with a type Bird
which is in turn associated with lexical entry in the
form of a TTR record:

Lex (Bird) =
bg = SitV
par = π
intrp = λr : bg .Bird
clfr = λr : bg .κAnimal (par, r)

 (12)

Assuming we have a function Lex that looks up
the lexical entry related to a type (associated with a
word), we also define a lookup function that gives
us the classifier corresponding to a type:

Clfr(T ) = Lex (T ). clfr

Intrp(T ) = Lex (T ). intrp

Let us assume a s123 situation where a speaker
points to a bird a and says “Bird!” (meaning “that
is a bird”). We want to classify a perceived situ-
ation as being of the type Bird or not, or in the
probabilistic case, compute the probability of the
judgment.

Now, to judge the probability with which a sit-
uation s is of a type Bird (to continue with our
example), the agent looks up the related classifier
and applies it to s, which produces a probability dis-
tribution over different subtypes of Animal . The
agent then looks up the probability associated with

Bird . The general method for doing this can be
written as:

p(s : T ) = idx(Clfr(T )(s)). lbl(Intrp(T )(s))

In our case:

p(s123 : Bird) = idx(κAnimal (π, s123)). lbl(Bird)

3 Classification systems in ProbTTR

To represent both taxonomical and observational
relations between types, we will embed a classifi-
cation system in ProbTTR. A classification system
has two components, a taxonomy (Section 3.1),
which is a set theoretic object representing an on-
tological hierarchy, and a collection of classifiers
(Section 3.2) associated with the taxonomy. Ulti-
mately the classifiers will provide witness condi-
tions for certain basic types and the taxonomy will
be fully encoded in the type system, but first we
define the structure in set theoretic terms so that
we can create a ProbTTR system with the correct
subtype relations.

3.1 Taxonomy

A taxonomy is a rooted tree structure defined by a
tuple,

T = 〈T,D, t∗〉, (13)

where T is a set of taxons, D ⊆ T ×P(T ) is a set
of distinctions on T , and t∗ ∈ T is the root taxon.

To elaborate, T is simply a finite set of labels
and D provides the hierarchical structure of the
taxonomy. Distinctions (elements of D) take the
form 〈g, S〉, where g ∈ T and S ⊂ T , and |S| ≥ 2.
We say that the taxons g and s stand in a genus-
species relationship if there is some 〈g, S〉 ∈ D
such that s ∈ S. Then s can be said to be a species
of g. Alternatively, we can say that g is the genus
of s.

This requires certain restrictions on T. Namely,
that it is:

• Acyclic: There are no cycles. I.e., no chain of
distinctions {〈g1, S1〉, ..., 〈gn, Sn〉} such that
g2 ∈ S1, ..., gn ∈ Sn−1 and g1 = gn.

• Rooted: There is no distinction 〈g, S〉 ∈ D
with t∗ ∈ S.
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• Uniquely connected: For every t 6= t∗ there
is exactly one 〈g, S〉 ∈ D such that t ∈ S.6

Importantly, this still allows for multiple
distinctions in which the same taxon acts
as a genus. In other words, we can have
〈g, S〉, 〈g, S′〉 ∈ D where S′ 6= S. For
example, we might imagine a taxonomy in
which both 〈Animal , {Bird ,Reptile, ...}〉 and
〈Animal , {Carnivore,Herbivor ,Omnivore}〉
are distinctions.

The uniquely connected constraint allows us to
define a function

Dist : T \ {t∗} → D (14)

that gives, for each taxon, t (other than t∗), the
distinction Dist(t) = 〈g, S〉 such that t ∈ S. For
convenience we also define the functions Genus ,
and Siblings such that

〈Genus(t),Siblings(t)〉 = Dist(t). (15)

Note that under this definition, leaf taxons are
those taxons for which there are no distinctions in
D where the taxon appears as a genus.

3.2 Species Classifiers
In addition to the taxonomy, we have a collection
of classifiers, K and parameters P, each of which
we index with elements of D, such that κd ∈ K
is the classifier for distinction d provided with the
appropriate parameters. This follows the intuition
that a distinction in the taxonomy may be accompa-
nied by an ability to distinguish among the relevant
species. In general, we need only assume that we
have classifiers for those distinctions that include
at least one leaf taxon, since genus taxons can be
defined as the join of their species in certain cases.7

For now we will assume we have a classifier for
each distinction in D.

3.3 The type system
Suppose we have a taxonomy T = 〈T,D, t∗〉 and
a collection of classifiers K on the distinctions of
that taxonomy. Let Dom be a special type corre-
sponding to the root of the taxonomy. We then

6A weakness of insisting on a tree structure is that we can-
not have taxons that appear in multiple places in the taxonomy,
whereas in folk taxonomies it would appear this is common.
We would either need to say that the apparently duplicated
taxon is actually part of a distinction at a higher level that
encompasses both, or that it corresponds to two senses of the
same word.

7See Marconi (1997, ch. 6) on “subordinate concepts”.

define variable types Ad for each d = 〈g, S〉 ∈ D
with R(A) = {As1 , ..., Asn} corresponding to
s1, ..., sn ∈ S. Classifiers provide the witness con-
ditions for the value types as described in Section
2. For a given entity a,

p(s : At) =

{
1 if t = t∗

κDist(t)(a)(t) otherwise
(16)

In other words, the probability assigned to At is
1 in the case of the root taxon, and otherwise de-
termined by the classifier for the distinction cor-
responding to the variable in which At is a value
type. These “auxiliary” value types we can give the
witness conditions for the associated with the taxo-
nomical categories as the product of the jugment of
the genus and the axiliary type. For any object a,

p(a : Tt) = p(a : At) · p(a : T ′t) (17)

where

T ′t =

{
Dom if t = t∗

TGenus(t) otherwise

This stipulates that the classifiers give us the
probability that an individual is of each of the
species types, given that it is of the genus type.
Thus judgments about Tt correspond to an absolute
judgment about belonging to the taxon.

Taken together, Equations 16 and 17 imply that
for any a, p(a : Tt∗) = p(a : Dom). In situations
where the root taxon corresponds to all individuals
(i.e., where Dom = Ind ), we have p(a : Tt∗) = 1
for any a. It is also possible, however, to embed a
classification system in an existing type system, as
long it provides witness conditions for Dom . For
example, if the classification system is specific to
birds, we might embed it in a larger system that
gives witness conditions for Bird .

3.4 Feature classifiers
In addition to the distinction classifiers, a classifi-
cation system may include some number of types
based on feature classifiers. A feature classifier
takes any entity a : Dom as input, and receives its
witness conditions from a classifier that results in
a probabilistic type judgement. In general, feature
and distinction classifiers need not interact explic-
itly though, considered as random variables, there
may be probabilistic dependence between them.
Distinction classifiers may be defined in terms of
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feature classifiers, for example as Bayesian clas-
sifiers that take the result of feature classifiers as
their input (see, Larsson and Bernardy (2021)).

In general, some of these feature types may
be dependent types. Consider a type like Tall .
Whether or not an individual is tall may depend on
a comparison class (for example, a type in the tax-
onomy). Following Fernandez and Larsson (2014),
we define dependent feature types with classifiers
that take a threshold function as a parameter. For
example,

θLarge : Type → R+ (18)

This gives the classifier the following type:

κLarge : (Type → R+)→ Type (19)

4 Combining the observation and
taxonomical aspects of
genus-differentia definitions

With this formal machinery in place, we return to
the project of characterising the result of grounding
(3-c). First, let’s lay out what is shared among
speakers A and B before (3-c) is grounded.

We will assume that A and B share a classi-
fication system with Bird at its root as part of
their common ground. Utterance (3-d) establishes
that a type for the lexical entry of corvid, for
which we will use Cor , is a type in this system,
and that there is a distinction on Cor such that
R(Cor) ⊇ {Jay ,Crw}, where Jay and Crw are
the lexical entries for jay and crow—that is, for all
species types of Cor given by the common ground ,
S (including at least Jay and Crw ), S v Cor . The
witness conditions for each S ∈ R(Cor) are given
by a multiclass classifier κCor . Since Cor v Bird ,
we may also assume that Dist(Cor) exists and that
there is a classifier κDist(Cor), though it need not
be common ground what the genus of Cor is.

Furthermore, we will assume we have types Lrg
and Blk , whose witness conditions are given by
feature classifiers. For the purposes of the example,
we will assume that Blk is basic type that gets its
witness conditions from a feature classifier, κBlk ,
whereas Lrg : Type → Type is a dependent type
with a classifier that depends on threshold function
θLrg . Thus, the witness conditions for Lrg(Cor)
are given by κLrg(θLrg(Cor)). This leaves open
the question of exactly how θLrg is defined, but we
may assume that the value of θLrg(Cor) depends
in some way on the parameters of the classifier

that defines the witness conditions for Cor , namely
κDist(Cor).

Returning to our desiderata, we want to construct
a type, Rav , such that:

∑
T∈Species(Cor)∪{Rav}

p(T‖Cor) = 1 (20a)

Rav v Cor (20b)

Rav ≺Cor Lrg(Cor) ∧ Blk (20c)

Here (20a) and (20b) formalise D1 and 20c for-
malises D2.

4.1 Constructive approach

As discussed previously, one motivation for formal-
ising this example and the interactive semantics of
genus-differentia definitions in general is to expose
some crucial distinctions in lexical semantics that
are often overlooked. In this section, we give what
is a rather straight-forward and intuitive solution to
the challenge we have given ourselves, but one that
fails to adequately make the distinction between
taxonomical and observational lexical information.

In this solution, we attempt to directly construct
a new type Rav out of the common ground types
already available. The most straight-forward way
to do this is with meet types:

Rav = Cor ∧ (Lrg(Cor) ∧ Blk) (21)

This definition is intuitively appealing—(3-c) is
saying that ravens are large and black and corvids.
Furthermore, this definition does actually satisfy
the desiderata stated so far.

To maintain (20a), we can redefine each existing
species type S as:

S′ = S ∧ ¬Rav (22)

We have Rav v Cor , satisfying (20b), since by
the Kolmogorov (1950) definition of the meet type
(6), for any possibility M and any entity a,

p(a :M Rav)

=p(a :M Cor) · p(a :M Lrg(Cor) ∧ Blk | Cor)

≤p(a :M Cor)

Finally, (20c) holds since it follows from
the definition of Rav that, p(Rav‖Lrg(Cor) ∧
Blk ,Cor) = 1 and, assuming there are
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at least some non-large, non-black corvids,
p(Rav‖Cor) < 1.8

However, the definition of the meet type (6) im-
plies we also get Rav v Lrg(Cor) and Rav v
Blk . It does not make sense for Rav to be a subtype
of large corvids or of black things (consider again
the possibility of an albino raven). Put another way,
it should be possible to construct a hypothetical
possibility M and entity a such that:

p(a :M Lrg(Cor) ∧ Blk) = 0 and

p(a :M Rav) > 0 (23)

In the next section, We will consider this a new
desiderata along with the constraints in (20). In-
stead of constructing the type directly from existing
types, we posit a basic type without explicit wit-
ness conditions, but with some constraints that are
derived from by the genus-differentia definition.

4.2 Underspecifed approach
Cooper (forthc) treats types as having an existence
independent of their witness conditions. Two types
can share the same witness conditions, for exam-
ple, and still play different roles in an agent’s type
system. Part of the motivation for doing this is that
an agent can reason about a type and its relation to
other types without specifying witness conditions
for that type. This is in contrast to predicates in
first-order logic, for example, which don’t have
any meaning independent of the model theoretic
entities they are interpreted as.

We would like to interpret definitions like (3-c)
as giving rise to an underspecified type; that is, a
type without explicit witness conditions. Instead,
we assert the following relationships between the
new underspecified type Rav and other existing
common ground types:

Rav v Cor (24a)

p(Lrg(Cor) ∧ Blk‖Rav) = 1 (24b)

Notice that neither of these two conditions give
us direct witness conditions for Rav . The first con-
dition says that anything (in any possibility) that is
a raven is also a corvid. The second condition says
that anything that is a raven is, with probability 1,
is large (for a corvid) and black. Note that (24b) is
a constraint on the type’s witness conditions given

8This assumption is justified by a pragmatic requirement
of genus-differentia definitions that the differentia do at least
some work to differentiate the definiendum from other species
of the genus.

the current possibility, meaning that we can not
infer Rav v Lrg(Cor) ∧ Blk , since nothing pre-
vents us from constructing a possibility in which
(23) holds. In other words, albino ravens are still
possible.

Clearly condition (20b) is satisfied by construc-
tion. This may be a bit unsatisfying, but it is
worthwhile to consider that asserting Rav v Cor
amounts to adding Rav as a witness condition to
Cor . Put another way, for any entity a and possi-
bility M , P (a :M Cor) ≥ P (a :M Rav).

In order to satisfy (20a), we need to redefine
the witness conditions of the existing species types
to “make room” in the probability distribution for
Rav . How to do this depends somewhat on how
completely the distinction is specified in the com-
mon ground. If there is an other corvid type,
Other , we might just redefine the classifier for that
type so that for any entity a, κ′corvid (a)(other) =
κcorvid (a)(other) − f(a), where f is such that
0 < f(a) < κcorvid (a)(other). Alternatively, we
might take some probability from each class. Ei-
ther way, the solution should be a function of a
that depends on the differentia, but exactly what
that function is is not common ground since (24b)
gives a unidirectional conditional—all ravens are
large and black, but there may still be large, black,
non-raven corvids.

It remains to be shown that (20c) holds. In the
following, let D = Lrg(Cor) ∧ Blk and S be the
set of types representing each of the sibling species
of Cor , including Rav .

p(Rav‖D,Cor)

=
p(Rav‖Cor) · p(D‖Rav ,Cor)∑
T∈S p(T‖Cor) · p(D‖T,Cor)

(25)

=
p(Rav‖Cor) · p(D‖Rav)∑
T∈S p(T‖Cor) · p(D‖T )

(26)

>p(Rav‖Cor) · p(D‖Rav) (27)

=p(Rav‖Cor) (28)

In the above, (25) follows from Bayes rule and
the fact that

∑
T∈S p(T‖Cor) = 1, and (26) fol-

lows from Rav v Cor . For (27), we must assume
that ∑

T∈S
p(T‖Cor) · p(D‖T ) ≤ 1.

This is the same assumption we made in the pre-
vious approach, which we argue follows from
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the pragmatics of genus-differentia definitions—
namely that not all non-raven corvids are large and
black. Finally, (28) follows directly from (24b).

In this approach, the type for raven, Rav is de-
fined only in terms of its relationship to types corre-
sponding to other terms in the utterance. A notable
feature of this solution is that everything we learn
from the definition can be stated in terms of witness
conditions for types that already exist: In the case
of corvid, we know that anything that witnesses the
type Rav is a witness for the type Cor . This holds
intensionally, meaning that it is true independent of
possibility. In the case of large and black, we know
extensionally that anything that is a raven will be
large and black.

Speaker B learns the type Rav and the con-
straints associated with it (24) based on the def-
inition offered by A in (3-c). After (3-d), this type
and the associated constrains are added to the com-
mon ground.

5 Conclusion

The main goal of this paper was to develop a frame-
work that can deal with the distinction between
taxonomical and observational lexical information.
We argue that this distinction is one that speakers
make in metalinguistic interaction, as in genus-
differentia definitions. In order to account for this
distinction, we use a type system in which inten-
sional relations between types can be reasoned
about independently of their witness conditions,
which depend on facts about the world.

Our account has been agnostic to the implemen-
tation of the classifiers involved. This is justified, in
part, by the fact that we describe updates to the con-
versational common ground, rather than individual
agents’ abilities. However, it may also be interest-
ing to consider what effect a dialogue like (3) may
have on speaker B’s ability to recognise ravens.
This is related to the machine learning task of zero-
shot classification, in which an existing classifier
is adapted to recognise instances of previously un-
known classes based on external information (such
as a natural language descriptions). Future work
should consider how zero-shot classification can be
analysed from an interactive perspective.
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