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Abstract

We compare various state-of-the-art regression
methods for predicting user ratings of their in-
teraction with a dialogue system using a richly
annotated corpus. We vary the size of the
training data and, in particular for kernel-based
methods, we vary the type of kernel used. Fur-
thermore, we experiment with various domain-
independent features, including feature com-
binations that do not rely on complex annota-
tions. We present detailed results in terms of
root mean square error, and Pearson’s r and
Spearman’s ρ correlations. Our results show
that in many cases Gaussian Process Regres-
sion leads to modest but statistically significant
gains compared to Support Vector Regression
(a strong baseline), and that the type of kernel
used matters. The gains are even larger when
compared to linear regression. The larger the
training data set the higher the gains but for
some cases more data may result in over-fitting.
Finally, some feature combinations work bet-
ter than others but overall the best results are
obtained when all features are used.

1 Introduction

Dialogue evaluation is an important research topic
which over the years has received much attention
but still remains an unsolved problem. This is be-
cause the quality of a human-machine interaction
can be influenced by a large number of factors,
such as the genre or domain of dialogue, the design
and capabilities of the system and its components,
the user expertise and expectations, etc.

In this paper we focus on task-oriented dialogue
and our goal is to predict user satisfaction, i.e., user
ratings after interacting with the dialogue system.
For this purpose we use a richly annotated dialogue
corpus with contextual information, and speech act
and task labels. This corpus was derived from the
original COMMUNICATOR corpus (Walker et al.,
2001a) via automatic annotation (Georgila et al.,
2005b, 2009). Users of the COMMUNICATOR

systems try to book a flight and they may also make
hotel or car-rental arrangements. An example dia-
logue excerpt is shown in Figure 2 in the Appendix.

The original COMMUNICATOR corpus con-
tained speech act and task annotations for the sys-
tem’s side of the conversation based on the DATE
scheme (Walker and Passoneau, 2001). Georgila
et al. (2005b, 2009) added speech act and task an-
notations for the user’s side of the conversation,
as well as information about the dialogue context,
e.g., filled slots, filled slots values, grounded slots,
speech acts history, etc. The corpus consists of
dialogues collected between human users and 8
dialogue systems. We extract domain-independent
features from this corpus, and perform regression
experiments in order to predict 5 different types
of user satisfaction ratings. The corpus and the
features we use are discussed in Section 3.

We explore 3 research questions: (i) Which re-
gression method works best and does the choice
of kernel matter for kernel-based regression? (ii)
What is the impact of varying the training data size?
(iii) Which feature combinations work best?

Our contributions are as follows: (1) We com-
pare various state-of-the-art regression methods, in
particular, linear regression, linear ridge regression,
Support Vector Regression (SVR), and Gaussian
Process Regression (GPR). We also vary the ker-
nel type for GPR. To our knowledge, GPR has
never been used before for dialogue system eval-
uation (or generally by the dialogue community)
despite the fact that it is considered as the state-of-
the-art for regression in other research areas. (2)
We vary the size of the training data and report on
its impact on performance for all regression meth-
ods. (3) We vary the feature combinations used
and discuss how the choice of features affects the
prediction quality of our models. Our features are
domain-independent but are derived from a richly
annotated corpus with dialogue context and his-
tory, and speech act and task labels. Even though
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the features we use are domain-independent, our
experiments provide valuable insights about the
benefits of different feature combinations, includ-
ing features taking into account dialogue context
and dialogue history, as well as features that are
not dependent on complex annotations.

Our results show that in many cases GPR leads
to modest but statistically significant gains com-
pared to SVR (a strong baseline), and that the type
of kernel matters. The gains are even larger when
compared to linear regression. The larger the train-
ing set the higher the gains but for some cases more
data may result in over-fitting. Some feature com-
binations work better than others but overall the
best results are obtained when all features are used.

2 Related Work

Dialogue evaluation is an important area of re-
search, and over the years there have been various
surveys recording the state-of-the-art, challenges,
and future directions in this research area (Hastie,
2012; Deriu et al., 2021; Mehri et al., 2022).

Prior to the recent advancement of chatbots,
most research on dialogue evaluation focused on
measuring the quality of human-system dialogue in-
teraction mainly for task-oriented dialogue systems.
Dialogue evaluation metrics can be subjective (e.g.,
user satisfaction, perceived task completion, etc.),
or objective (e.g., word error rate, dialogue length,
etc.). Interaction logs provide information for cal-
culating objective measures whereas subjective as-
sessments can be collected via surveys and ques-
tionnaires (Hone and Graham, 2000).

The most well-known framework for automat-
ing the dialogue evaluation process is PARADISE
(Walker et al., 2000). PARADISE aims to opti-
mize a desired quality such as user satisfaction by
formulating it as a linear combination of various
metrics, such as task success and dialogue cost
(e.g., dialogue length, speech recognition errors,
etc.). The contribution of each factor is determined
by weights calculated via linear regression. The
advantage of this method is that once a desired
quality has been formulated as a realistic evalua-
tion function, it can be optimized by controlling
the factors that affect it. Thus, user satisfaction can
for example be optimized by increasing task suc-
cess, and minimizing dialogue length and speech
recognition errors. Note however that longer dia-
logue lengths are not necessarily indicative of poor
dialogue quality but depending on the task they

may actually indicate user engagement and satis-
faction (Foster et al., 2009). Indeed, PARADISE
has been shown to be capable of automatically pre-
dicting dialogue quality in the travel planning do-
main (Wright-Hastie et al., 2002). However, it
has been argued that PARADISE cannot accurately
predict individual user judgements and only covers
40-50% of the variance in the data that it is trained
on (Möller and Ward, 2008).

In non-task-oriented dialogue systems (e.g., chat-
bots) developing robust evaluation metrics can be
even harder than for task-oriented dialogue. Here
it is not clear what success means and task-specific
objective metrics are not appropriate. Instead sub-
jective evaluations for appropriateness of responses
can be much more meaningful, which has led to
the development of coding schemes for response
appropriateness in such cases (Traum et al., 2004;
Robinson et al., 2010).

Currently, word-overlap similarity metrics such
as BLEU, METEOR, and ROUGE (originally em-
ployed in machine translation and summarization)
are widely used for measuring chatbot dialogue
quality. However, it has been shown that BLEU,
METEOR, and ROUGE do not correlate well with
human judgements of dialogue quality (Liu et al.,
2016). Discriminative BLEU, a variation of BLEU
where reference strings are scored for quality by
human raters, was found to correlate better with
human judgements than standard BLEU (Galley
et al., 2015). To address the issues with BLEU,
METEOR, and ROUGE, next utterance classifi-
cation was introduced as a method for evaluating
chatbots (Lowe et al., 2016), but the proposed met-
ric recall@k does not take into account the fact
that just because a system response is not part of a
pre-defined set of appropriate responses it does not
mean that it is wrong. Furthermore, topic-based
metrics for chatbot evaluation (topic breadth and
topic depth) were found to correlate well with hu-
man judgements (Guo et al., 2017).

There has also been work on estimating user
satisfaction at the system-user exchange level rather
than rating the whole dialogue (Engelbrecht et al.,
2009; Higashinaka et al., 2010; Ultes and Minker,
2014; Schmitt and Ultes, 2015). Recently, new
evaluation metrics have been proposed for open-
domain dialogue leveraging pre-trained language
models such as BERT and DialoGPT (Ghazarian
et al., 2020; Mehri and Eskenazi, 2020a,b).

In this paper, we focus on predicting user sat-
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isfaction ratings for the whole dialogue and com-
pare various state-of-the-art regression methods.
As mentioned earlier, one of our most important
contributions is the introduction of Gaussian Pro-
cess Regression (GPR) to the dialogue community
as a means for dialogue system evaluation. GPR
has been used before in the NLP community for
machine translation quality estimation (Cohn and
Specia, 2013) and emotion prediction (Beck et al.,
2014). To our knowledge, in the dialogue com-
munity Gaussian Processes (i.e., the GP-SARSA
algorithm) have only been used for dialogue policy
learning via reinforcement learning (Gašić et al.,
2010; Gašić and Young, 2014).

We compare GPR with Support Vector Regres-
sion (SVR), which is a strong baseline, and linear
regression. Of course linear regression has been
used before for dialogue evaluation (e.g., (Walker
et al., 2000, 2001b; Georgila et al., 2019, 2020)).
Classification based on Support Vector Machines
has been used for interaction quality estimation
(Ultes and Minker, 2014; Schmitt and Ultes, 2015).

3 Data and Features

The corpus that we use was derived from the origi-
nal COMMUNICATOR corpus via automatic anno-
tation (Georgila et al., 2005b, 2009). The original
COMMUNICATOR corpus contained speech act
and task annotations for the system’s side of the
conversation based on the DATE scheme (Walker
and Passoneau, 2001). Georgila et al. (2005b, 2009)
added speech act and task annotations for the user’s
side of the conversation, as well as information
about the dialogue context, e.g., filled slots, filled
slots values, grounded slots, etc. Georgila et al.
(2005b, 2009) present in detail how these fully auto-
matic annotations were generated. Figure 2 shows
an example dialogue excerpt including speech act
and task annotations, and Figure 3 depicts an ex-
ample dialogue state corresponding to the dialogue
status after user utterance 4 in Figure 2.

The automatic annotations were evaluated with
respect to the task completion metrics of the orig-
inal corpus and in comparison to hand-annotated
data, which has verified their validity and reliability
(Georgila et al., 2009). Over the years the utility
of this annotated corpus has been demonstrated
by its use by various researchers for different pur-
poses, mainly, learning dialogue policies (Hender-
son et al., 2005; Frampton and Lemon, 2006; Hen-
derson et al., 2008) and building simulated users

(Schatzmann et al., 2005; Georgila et al., 2005a,
2006). More recently, it was used for system dia-
logue act selection for pre-training of goal-oriented
dialogue policies (McLeod et al., 2019).

The dialogue context annotations are divided
into 2 broad categories: logs of the current status of
the slots (i.e., ‘FilledSlotsStatus’, ‘FilledSlotsVal-
uesStatus’, ‘GroundedSlotsStatus’), and logs con-
taining information about how the status of the slots
has changed over the course of the dialogue (i.e.,
‘FilledSlotsHist’, ‘FilledSlotsValuesHist’, ‘Ground-
edSlotsHist’). Because the former inform us about
the current status of the slots they may only contain
one instance per slot. The latter give us informa-
tion about the order in which slots have been filled
or confirmed and may contain several instances
of the same slot, e.g., a slot could be confirmed
twice. Thus, if a confirmed slot is refilled with
a new value it will remain in the ‘ConfirmedSlot-
sHist’ field even though its new value has not been
confirmed yet. The history of speech acts and tasks
is also included in the annotations.

The annotated corpus (COMMUNICATOR 2001
part) consists of 1683 dialogues collected between
human users and 8 dialogue systems but for our
experiments we only used dialogues for which all
user ratings were available: ATT (157 dialogues),
BBN (137 dialogues), CMU (69 dialogues), COL-
ORADO (157 dialogues), IBM (77 dialogues), LU-
CENT (140 dialogues), MIT (166 dialogues), and
SRI (103 dialogues). The first half of the dialogues
from each system are included in the training data
set (500 dialogues) and the rest are included in the
test data set (506 dialogues).

We extract 16 features from this corpus and per-
form regression experiments in order to predict
the following user satisfaction ratings on a Likert
scale (1-5, higher is better): ease of the tasks the
user had to accomplish (henceforth referred to as
‘Task-Ease’), whether it was easy or not to under-
stand the system (henceforth referred to as ‘System-
Comprehend-Ease’), the user’s expertise (hence-
forth referred to as ‘User-Expertise’), whether the
system behaved as expected (henceforth referred
to as ‘System-Behaved-As-Expected’), and if the
user would use the system again in the future or not
(henceforth referred to as ‘System-Future-Use’).
We use 16 features divided into 4 categories:

• duration-related features (9): overall dura-
tion, duration of the system talking part, dura-
tion of the user talking part, overall average
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duration per utterance, average duration per
system utterance, average duration per user ut-
terance, number of overall speech acts, num-
ber of system speech acts, number of user
speech acts;

• slots-related features (3): number of filled
slots, number of filled slots without any ‘null’
values, number of grounded slots (all at the
end of the dialogue);

• slots-history-related features (3): number
of filled slots in the dialogue history, number
of filled slots without any ‘null’ values in the
dialogue history, number of grounded slots
in the dialogue history (all at the end of the
dialogue);

• word error rate (WER) (1): calculated by
comparing the speech recognition output to
the transcription of the user utterance (this in-
formation was included in the original COM-
MUNICATOR corpus).

We remove all empty (‘[]’) values, and also
distinguish between slots filled with normal ver-
sus ‘null’ values as an extra piece of information
(see Figure 3 in the Appendix). Because we only
consider numbers of slots, speech acts, and tasks,
and not their specific types or values, our features
are domain-independent and also automatically ex-
tracted from the data. We replace feature values
with z-scores, i.e., from each feature value we sub-
tract the mean for that feature and then divide by
the standard deviation for that feature. For each
feature, the mean and standard deviation are calcu-
lated on the training data set.

4 Regression Methods

For our experiments we use various regression
methods, specifically, linear regression, linear re-
gression with L2 regularization (also known as lin-
ear ridge regression), Support Vector Regression
(SVR), and Gaussian Process Regression (GPR).
As mentioned above, to our knowledge, GPR has
not been used before for dialogue system evalua-
tion, even though GPR is considered as the state-of-
the-art for regression and is continually attracting
more and more interest.

Gaussian Processes (GPs) are an elegant frame-
work for probabilistic inference incorporating ker-
nels and Bayesian inference (Rasmussen and
Williams, 2006). A GP is a probability distribution

over possible functions that fit a set of data points.
GPs are similar to Support Vector Machines in the
sense that they use kernels for non-linear modelling.
The main difference is that GPs are probabilistic
models and support exact Bayesian inference for re-
gression; approximate inference is required for clas-
sification (Rasmussen and Williams, 2006). GPs
are also more flexible in terms of fitting the ker-
nel hyperparameters even for complex composite
kernels. Because of their probabilistic formulation
GPs can also be incorporated into larger graphical
models and explicitly model uncertainty.

A kernel is a way of computing the dot product
of two vectors in a high dimensional feature space.
Thus the kernel function k(xi, xj) essentially tells
the model how similar two data points (xi, xj) are.

For SVR we use scikit-learn1. For GPR we use
the GPy library2. For SVR we experimented with
various kernels but using the RBF (radial basis
function) kernel resulted in the best performance.
For GPR we use the exponential kernel, the rational
quadratic kernel, the RBF kernel, the sum of the
exponential and the periodic kernel, the sum of the
rational quadratic and the periodic kernel, and the
sum of the RBF and the periodic kernel.

The RBF kernel is also called the exponentiated
quadratic kernel, the squared exponential kernel,
or the Gaussian kernel. The rational quadratic ker-
nel is equivalent to adding together multiple RBF
kernels with various length scales. For all GPR ex-
periments we varied the length scale and we report
results for length scale equal to 1 (the higher the
value of the length scale the smoother the learned
function). Varying the length scale did not result in
significant differences. Note that adding two ker-
nels can be thought of as an OR operation. Thus,
the resulting kernel will have a high value if either
of the two base kernels has a high value.

All of the above are frequently used kernels for
GPR that seem to perform well for various types
of data. Training custom kernels may lead to better
results but this is a complex process and one of our
future work directions. Note that we also experi-
mented with other kernels such as the Matérn 3/2
and 5/2 kernels (Rasmussen and Williams, 2006)
as well as the periodic kernel by itself but we do
not report these results due to space restrictions.
These kernels performed consistently worse.

1https://scikit-learn.org/stable/
2https://gpy.readthedocs.io/en/deploy/

https://scikit-learn.org/stable/
https://gpy.readthedocs.io/en/deploy/


Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue,
August, 22-24, 2022, Dublin.

linear linear SVR GPR GPR GPR GPR GPR GPR
ridge RBF exp ratq RBF exp+per ratq+per RBF+per

Task-Ease
RMSE 1.428 1.376 1.303 1.279 1.281 1.434 1.278 1.281 1.277
r 0.349 0.373 0.477 0.493 0.491 0.298 0.494 0.491 0.498
ρ 0.425 0.435 0.48 0.506 0.501 0.322 0.507 0.501 0.502

System-Comprehend-Ease
RMSE 1.302 1.242 1.203 1.161 1.165 1.246 1.168 1.165 1.178
r 0.161 0.2 0.354 0.383 0.378 0.197 0.374 0.378 0.356
ρ 0.242 0.257 0.366 0.391 0.383 0.194 0.378 0.383 0.366

User-Expertise
RMSE 1.405 1.359 1.305 1.297 1.294 1.317 1.297 1.294 1.283
r 0.137 0.156 0.272 0.252 0.248 0.174 0.253 0.248 0.268
ρ 0.184 0.184 0.281 0.266 0.258 0.148 0.267 0.258 0.276

System-Behaved-As-Expected
RMSE 1.397 1.38 1.295 1.282 1.288 1.419 1.274 1.288 1.288
r 0.321 0.333 0.44 0.453 0.447 0.343 0.462 0.447 0.445
ρ 0.377 0.382 0.443 0.454 0.451 0.395 0.465 0.451 0.451

System-Future-Use
RMSE 1.492 1.455 1.397 1.398 1.398 1.48 1.41 1.398 1.41
r 0.251 0.269 0.382 0.376 0.375 0.256 0.342 0.375 0.343
ρ 0.281 0.285 0.379 0.362 0.364 0.254 0.333 0.364 0.339

Table 1: Results for RMSE, Pearson’s r correlation, and Spearman’s ρ correlation, for various regression methods
using all the training data and all features; “exp” stands for exponential, “ratq” for rational quadratic, and “per” for
periodic kernel. The best values are shown in bold.

5 Results

To measure the predictive power of our models we
compare the predictions of each model for each of
the 5 user ratings with the ground truth, i.e., the
ratings in the test data. We calculate the Root Mean
Square Error (RMSE), Pearson’s r correlation, and
Spearman’s ρ correlation.

RMSE measures the average error between the
model predictions and the ground truth and its value
varies from 0 to 4, given that user ratings were on a
scale from 1 to 5. Lower RMSE values are better.

Pearson’s r measures the linear relationship be-
tween the model predictions and the ground truth
and can range from -1 to 1 (the higher the better).

Spearman’s ρ is based on the ranked values of
the ratings rather than the raw data, which makes
sense in our case given that the user ratings can
be thought of as some kind of ranking between
interactions even though users rated individual in-
teractions. Spearman’s ρ determines the degree to
which the relationship between the compared vari-
ables is monotonic. Spearman’s ρ ranges from -1
to 1 (the higher the better).

5.1 Which regression method works best?

Table 1 shows the RMSE, r, and ρ values for the
regression methods and kernel types mentioned in
Section 4. Here we use all the training data and all
features. Clearly SVR and GPR outperform linear
and linear ridge regression. For all rating types,
GPR results in modest gains compared to SVR, ex-
cept for ‘System-Future-Use’. For ‘User-Expertise’
SVR results in higher correlation scores than GPR
but also higher RMSE. As we will see later, the
gains resulting from GPR (compared to SVR) are
statistically significant mainly for ‘Task-Ease’ and
‘System-Comprehend-Ease’. For GPR the exponen-
tial and rational quadratic kernels outperform the
RBF kernel. Adding the periodic kernel to the expo-
nential, rational quadratic, and RBF kernels respec-
tively may lead to improved performance. Adding
the exponential and the periodic kernel results in
slight gains for ‘Task-Ease’, ‘User-Expertise’, and
‘System-Behaved-As-Expected’. Adding the ratio-
nal quadratic and the periodic kernel did not make
any difference compared to just using the rational
quadratic kernel. Adding the RBF and the periodic
kernel led to improved values.
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linear linear SVR GPR GPR GPR GPR GPR GPR
ridge RBF exp ratq RBF exp+per ratq+per RBF+per

Task-Ease
20% 1.794 1.446 1.382 1.366 1.479 1.479 1.364 1.364 1.364
40% 1.56 1.415 1.382 1.359 1.349 1.385 1.393 1.39 1.417
60% 1.44 1.397 1.348 1.332 1.331 1.373 1.341 1.347 1.347
80% 1.414 1.369 1.296 1.278 1.277 1.31 1.283 1.281 1.305
100% 1.428 1.376 1.303 1.279 1.281 1.434 1.278 1.281 1.277

System-Comprehend-Ease
20% 1.886 1.508 1.249 1.209 1.265 1.265 1.204 1.199 1.199
40% 1.65 1.449 1.222 1.219 1.212 1.312 1.228 1.222 1.231
60% 1.331 1.25 1.188 1.189 1.18 1.241 1.189 1.222 1.222
80% 1.262 1.228 1.172 1.159 1.154 1.199 1.161 1.161 1.185
100% 1.302 1.242 1.203 1.161 1.165 1.246 1.168 1.165 1.178

User-Expertise
20% 1.535 1.499 1.312 1.315 1.329 1.329 1.315 1.309 1.309
40% 1.48 1.395 1.33 1.321 1.319 1.352 1.369 1.399 1.399
60% 1.461 1.418 1.353 1.346 1.34 1.384 1.342 1.366 1.366
80% 1.397 1.361 1.326 1.307 1.299 1.342 1.304 1.31 1.325
100% 1.405 1.359 1.305 1.297 1.294 1.317 1.297 1.294 1.283

System-Behaved-As-Expected
20% 1.777 1.397 1.379 1.431 1.432 1.432 1.431 1.346 1.349
40% 1.506 1.338 1.385 1.333 1.334 1.33 1.422 1.414 1.403
60% 1.404 1.34 1.355 1.305 1.309 1.332 1.313 1.328 1.328
80% 1.383 1.337 1.316 1.287 1.288 1.314 1.29 1.279 1.281
100% 1.397 1.38 1.295 1.282 1.288 1.419 1.274 1.288 1.288

System-Future-Use
20% 1.847 1.643 1.592 1.541 1.541 1.541 1.541 1.5 1.5
40% 1.742 1.524 1.558 1.506 1.47 1.486 1.468 1.494 1.5
60% 1.542 1.489 1.456 1.444 1.443 1.463 1.44 1.444 1.444
80% 1.498 1.461 1.438 1.407 1.41 1.424 1.404 1.411 1.411
100% 1.492 1.455 1.397 1.398 1.398 1.48 1.41 1.398 1.41

Table 2: Results for RMSE, for various regression methods using all features, and varying the percentage of training
data (20%, 40%, 60%, 80%, 100%); “exp” stands for exponential, “ratq” for rational quadratic, and “per” for
periodic kernel. The best values are shown in bold.

5.2 What is the impact of varying the training
data size?

Table 2 shows the RMSE values for the regression
methods and kernel types mentioned in Section 4.
We use all features but vary the percentage of train-
ing data (20%, 40%, 60%, 80%, 100%, from each
system respectively). Due to space constraints we
do not report results on correlation. The values
of Pearson’s r and Spearman’s ρ are consistent
with the corresponding RMSE values (the lower
the RMSE the higher the correlation).

As expected, for most rating types and meth-
ods the larger the size of the training data set the
better the performance. However, there are some

exceptions when we move from using 80% of the
training data to 100% of the training data.

For ‘Task-Ease’ and for the GPR cases when we
add the periodic kernel to the exponential, rational
quadratic, and RBF kernels respectively, perfor-
mance improves or remains stable when we use
100% of the training data but in all other cases
it drops. For ‘System-Comprehend-Ease’, perfor-
mance improves when we use 100% of the training
data only for the GPR case with the sum of the RBF
kernel and periodic kernel. For ‘User-Expertise’ us-
ing 100% of the training data outperforms using
80% of the data for all cases except for linear regres-
sion. For ‘System-Behaved-As-Expected’ some-
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times adding the last 20% of the data helps but not
always. It does not help for linear and linear ridge
regression, GPR with the rational quadratic kernel,
GPR with the RBF kernel, GPR with the sum of
the rational quadratic and periodic kernel, and GPR
with the sum of the RBF and periodic kernel. For
‘System-Future-Use’ using 80% of the training data
is better than using 100% of the training data for
GPR with the RBF kernel and GPR with the sum
of the exponential and periodic kernel. Thus, we
can see that in some cases some kind of over-fitting
takes place as we add more data.

5.3 Which feature combinations work best?

Table 3 shows the RMSE, r, and ρ values for the
regression methods SVR with the RBF kernel and
GPR with the exponential kernel. Here we use all
the training data but vary the features.

Tables 1 and 2 show that there is not much dif-
ference between using GPR with the exponential
kernel and GPR with the rational quadratic kernel
or their counterparts with the addition of the peri-
odic kernel. For this reason and because of space
limitations, for the third research question, we only
consider GPR with the exponential kernel and SVR
with the RBF kernel. So far we have seen that in
many cases GPR outperforms SVR (a strong base-
line) but here we also want to see if this is the case
for different feature combinations and report on
statistical significance.

In terms of feature combinations we get the best
results when we use all features except for ‘System-
Comprehend-Ease’ and ‘User-Expertise’. As we
can see from the first two rows for each rating type,
sometimes the duration features are more predictive
than the slot features, and vice versa. Combining
these features leads to further improvements for all
rating types and both SVR and GPR. Adding WER
to duration features (dur+WER) always helps ex-
cept for ‘User-Expertise’. Adding slots features to
duration features and WER (dur+WER+sl) also
always helps. Adding slots history features to
WER, slots, and duration features (which is equiv-
alent to using all features) helps in most cases
except for ‘System-Comprehend-Ease’ and ‘User-
Expertise’. When we remove WER from all fea-
tures (all-WER) performance improves slightly for
‘System-Comprehend-Ease’ with SVR, and ‘User-
Expertise’ with both SVR and GPR.

Regarding comparing SVR and GPR, for ‘Task-
Ease’ and ‘System-Comprehend-Ease’, GPR is al-

most always significantly better than SVR. For
all statistical significance calculations, for com-
paring SVR and GPR, we use the squared error
values and the Wilcoxon signed-rank test with
Holm-Bonferroni correction for repeated measures.
For ‘User-Expertise’ and ‘System-Behaved-As-
Expected’, GPR is significantly better than SVR
when we use the slots features (p < 0.01 and
p < 0.001 respectively). For ‘System-Future-Use’,
differences between SVR and GPR performance
are not significant.

Walker et al. (2001b) also showed the impor-
tance of duration and WER for user satisfaction
prediction using the original COMMUNICATOR
corpus. WER cannot be available unless the user
speech is transcribed so an alternative approach
would be to use speech recognition confidence
scores as a proxy for WER. We also present re-
sults assuming that the user’s perceived task com-
pletion is available (as a high bar for prediction),
and as expected, this extra piece of information can
significantly improve performance (p < 0.001).

We also implemented 5 simple baselines where
the model always predicts the same score. Thus,
Baseline 1 always predicts the score 1, Baseline
2 always predicts 2, etc. Table 4 shows results
for RMSE for the baseline that always predicts the
score 3 and the majority baseline for each type of
rating, and the best performance of GPR with the
exponential kernel (based on Table 3). Figure 1
shows the distributions of values (1 to 5) for each
type of rating. The distributions in the training and
test data differ, and each type of rating follows dif-
ferent patterns. Based on the distributions for the
training data, Baseline 4 is equivalent to the major-
ity baseline for ‘Task-Ease’, ‘System-Comprehend-
Ease’, ‘User-Expertise’, and ‘System-Behaved-As-
Expected’, and Baseline 1 is the majority baseline
for ‘Future-Use’. Baseline 3 generates RMSE val-
ues of approximately 1.5 and the only case where
the majority baseline works well is for ‘System-
Comprehend-Ease’. Differences in performance
between GPR and all baselines for all rating types
are statistically significant (p < 0.001).

6 Conclusion

We used regression for predicting user ratings of
their interaction with a dialogue system using the
richly annotated version of the COMMUNICATOR
corpus (Georgila et al., 2005b, 2009). We explored
3 research questions: (i) Which regression method
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SVR-RMSE SVR-r SVR-ρ GPR-RMSE GPR-r GPR-ρ Stat Sign
Task-Ease

dur 1.37 0.408 0.417 1.319 0.442 0.443 p < 0.01
sl 1.377 0.395 0.374 1.357 0.385 0.385 p < 0.01
dur+sl 1.334 0.452 0.448 1.292 0.476 0.484 p < 0.01
dur+WER 1.327 0.452 0.459 1.292 0.483 0.495 p < 0.05
dur+WER+sl 1.316 0.466 0.469 1.281 0.491 0.503 p < 0.01
all-WER 1.311 0.473 0.472 1.287 0.484 0.495 p < 0.05
all 1.303 0.477 0.48 1.279 0.493 0.506 p < 0.05
all+PTC 1.166 0.61 0.605 1.145 0.627 0.636 p < 0.05

System-Comprehend-Ease
dur 1.231 0.269 0.314 1.187 0.339 0.341 p < 0.01
sl 1.208 0.349 0.353 1.203 0.343 0.306 n.s.
dur+sl 1.191 0.377 0.382 1.16 0.387 0.387 p < 0.01
dur+WER 1.229 0.293 0.318 1.178 0.368 0.376 p < 0.001
dur+WER+sl 1.202 0.359 0.364 1.157 0.393 0.396 p < 0.001
all-WER 1.191 0.373 0.379 1.162 0.377 0.38 p < 0.05
all 1.203 0.354 0.366 1.161 0.383 0.391 p < 0.001
all+PTC 1.192 0.386 0.397 1.137 0.434 0.439 p < 0.001

User-Expertise
dur 1.312 0.26 0.29 1.287 0.25 0.262 n.s.
sl 1.317 0.223 0.187 1.305 0.191 0.164 p < 0.01
dur+sl 1.28 0.306 0.314 1.28 0.275 0.288 n.s.
dur+WER 1.313 0.25 0.27 1.288 0.248 0.263 n.s.
dur+WER+sl 1.287 0.295 0.295 1.283 0.27 0.278 n.s.
all-WER 1.3 0.28 0.3 1.296 0.26 0.274 n.s.
all 1.305 0.272 0.281 1.297 0.252 0.266 n.s.
all+PTC 1.289 0.293 0.315 1.276 0.297 0.325 n.s.

System-Behaved-As-Expected
dur 1.341 0.398 0.401 1.333 0.392 0.385 n.s.
sl 1.417 0.328 0.307 1.363 0.331 0.322 p < 0.001
dur+sl 1.301 0.442 0.436 1.294 0.439 0.432 n.s.
dur+WER 1.309 0.424 0.426 1.301 0.429 0.435 n.s.
dur+WER+sl 1.298 0.439 0.441 1.283 0.453 0.453 n.s.
all-WER 1.295 0.447 0.442 1.288 0.446 0.443 n.s.
all 1.295 0.44 0.443 1.282 0.453 0.454 n.s.
all+PTC 1.191 0.568 0.573 1.185 0.572 0.577 n.s.

System-Future-Use
dur 1.445 0.307 0.298 1.416 0.338 0.323 n.s.
sl 1.446 0.266 0.265 1.446 0.315 0.322 n.s.
dur+sl 1.415 0.357 0.356 1.4 0.364 0.35 n.s.
dur+WER 1.422 0.341 0.333 1.403 0.372 0.364 n.s.
dur+WER+sl 1.41 0.364 0.364 1.397 0.374 0.363 n.s.
all-WER 1.405 0.367 0.365 1.397 0.37 0.355 n.s.
all 1.397 0.382 0.379 1.398 0.376 0.362 n.s.
all+PTC 1.31 0.489 0.485 1.321 0.49 0.481 n.s.

Table 3: Results for RMSE, Pearson’s r correlation, and Spearman’s ρ correlation, for SVR with the RBF kernel
and GPR with the exponential kernel using all the training data and varying feature combinations; “dur” stands
for duration, “sl” for slots, and “PTC” for perceived task completion. The best values are shown in bold. The last
column shows statistical significance (“n.s.” stands for non-significant).
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Figure 1: Ratings’ distributions for the training and test data.

Bas 3 Bas maj GPR
Task-Ease 1.471 1.721 1.279
System-Compre 1.421 1.285 1.157
hend-Ease
User-Expertise 1.431 1.41 1.28
System-Behaved- 1.433 1.705 1.282
As-Expected
System- 1.516 2.321 1.397
Future-Use

Table 4: Results for RMSE for the baselines and the
best performance of GPR with the exponential kernel
based on Table 3. The best values are shown in bold.

works best and does the choice of kernel matter for
kernel-based regression? (i) What is the impact of
varying the training data size? (iii) Which feature
combinations work best?

To answer the first question we compared vari-
ous state-of-the-art regression methods: linear re-
gression, linear ridge regression, SVR, and GPR.
We also varied the kernel type for GPR. To our
knowledge, GPR has never been used before for
dialogue system evaluation (or generally by the
dialogue community) despite the fact that it is con-
sidered as the state-of-the-art for regression in other
research areas. In many cases (mainly for ‘Task-
Ease’ and ‘System-Comprehend-Ease’), GPR led
to modest but statistically significant gains com-
pared to SVR (a strong baseline), and the type of
kernel used mattered. The gains were even larger
when compared to linear regression.

To answer the second question we varied the

training data size and reported on its impact on
performance for all regression methods. The larger
the training set the higher the gains but for some
methods more data may result in over-fitting.

To answer the third question we varied the fea-
ture combinations used for regression and showed
how the choice of features affects the prediction
quality of our models. Even though the features
we used are domain-independent, our experiments
provided valuable insights about the benefits of
different feature combinations, including features
taking into account dialogue context and dialogue
history, as well as feature combinations that do not
rely on complex annotations. Some feature combi-
nations worked better than others but in most cases
the best results were obtained with all features.

Overall the RMSE ranged roughly from 1 to 1.5
depending on the regression method and kernel
type, training data size, and feature combination.
Predicting individual user judgements is a hard task
(Möller and Ward, 2008), and given that we did not
use any domain-dependent features our results are
promising. For future work we will train custom
kernels and measure if performance improves. We
also expect performance gains from using domain-
dependent features.
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Appendix

System utterance 1 what trip would you like to take?
System speech act request_info
System task top_level_trip
User utterance 1 ASR output i’d like to fly from boston to detroit on november second
User transcription i’d like to fly from boston to detroit on november second
User speech act [provide_info,provide_info,provide_info]
User task [orig_city,dest_city,depart_date]
System utterance 2 on friday, november second
System speech act implicit_confirm
System task depart_arrive_date
System utterance 3 flying to detroit
System speech act implicit_confirm
System task dest_city
System utterance 4 pardon me
System speech act apology
System task meta_slu_reject
System utterance 5 did you say flying from boston instead?
System speech act explicit_confirm
System task orig_city
User utterance 2 ASR output yes boston to detroit on northwest airline
User transcription yes from boston to detroit on northwest airlines
User speech act [yes_answer,reprovide_info,reprovide_info,provide_info]
User task [null,orig_city,dest_city,airline]
System utterance 6 flying from boston to detroit
System speech act implicit_confirm
System task orig_dest_city
System utterance 7 on northwest
System speech act implicit_confirm
System task airline
System utterance 8 instead
System speech act tbc
System task tbc
System utterance 9 about what time do you want to leave?
System speech act request_info
System task depart_arrive_time
User utterance 3 ASR output early morning july twenty p. m.
User transcription early morning to arrive around two p. m.
User speech act [provide_info,provide_info]
User task [depart_date,depart_time]
System utterance 10 leaving in the early morning
System speech act implicit_confirm
System task depart_arrive_time
System utterance 11 pardon me
System speech act apology
System task meta_slu_reject
System utterance 12 did you say on friday, july twentieth
System speech act explicit_confirm
System task depart_arrive_date
System utterance 13 instead?
System speech act tbc
System task tbc
User utterance 4 ASR output no november second
User transcription no november second
User speech act [no_answer,provide_info]
User task [null,depart_date]

Figure 2: An example dialogue excerpt between the system and the user. Both the automatic speech recognition
(ASR) output and the transcription of the user’s speech are shown. Speech act and task annotations are depicted for
both the system and the user. Note that user speech act and task annotations, and dialogue context information are
derived from the ASR output.
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DIALOGUE LEVEL
Turn: user
TurnStartTime: 991948554.109
TurnEndTime: 991948559.296
TurnNumber: 4
Speaker: user
UtteranceStartTime: 991948554.109
UtteranceEndTime: 991948559.296
UtteranceNumber: 4
DialogueActType: user
ConvDomain: about_task
SpeechAct: [no_answer,provide_info]
AsrInput: no <date_time>november second</date_time>
TransInput: no <date_time>november second</date_time>
Output:
TASK LEVEL
Task: [null,depart_date]
FilledSlot: [null,depart_date]
FilledSlotValue: [no,november second]
GroundedSlot: []
LOW LEVEL
WordErrorRatenoins: 0.00
WordErrorRate: 0.00
SentenceErrorRate: 0.00
KeyWordErrorRate: 0.0
ComputeErrorRatesReturnValue: 0
HISTORY LEVEL
FilledSlotsStatus: [orig_city],[dest_city],[airline],[null],[null],[null],[depart_time],[null],[depart_date]
FilledSlotsValuesStatus: [boston],[detroit],[northwest],[boston],[detroit],[yes],[p m],[no],[november second]
GroundedSlotsStatus: [],[orig_city],[dest_city],[airline],[]
SpeechActsHist: request_info,[provide_info,provide_info,provide_info],implicit_confirm,implicit_confirm,apology,
explicit_confirm,[yes_answer,reprovide_info,reprovide_info,provide_info],implicit_confirm,implicit_confirm,tbc,
request_info,[provide_info,provide_info],implicit_confirm,apology,explicit_confirm,tbc,[no_answer,provide_info]
TasksHist: top_level_trip,[orig_city,dest_city,depart_date],depart_arrive_date,dest_city,meta_slu_reject,
orig_city,[null,orig_city,dest_city,airline],orig_dest_city,airline,tbc,
depart_arrive_time,[depart_date,depart_time],depart_arrive_time,meta_slu_reject,depart_arrive_date,tbc,[null,depart_date]
FilledSlotsHist: [orig_city,dest_city,depart_date],[null,null,null,airline],[depart_date,depart_time],
[null,depart_date]
FilledSlotsValuesHist: [boston,detroit,november second],[yes,boston,detroit,northwest],[july twenty,p m],
[no,november second]
GroundedSlotsHist: [],[orig_city,dest_city,depart_date],[orig_city,dest_city,airline],[]

Figure 3: An example dialogue state generated after user utterance 4 in Figure 2. Note that sometimes empty (‘[]’)
and ‘null’ values are generated but they do not affect the accuracy of the slot values.
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