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Abstract

A popular framework for modelling pragmatic
effects is the “rational speech act” (RSA) model
introduced by Frank and Goodman (2012). The
idea behind RSA is that, to interpret an utter-
ance, a rational (pragmatic) listener reasons
about a speaker who chooses their utterance by
reasoning about the listener, using a literal se-
mantic model. In the present work, we take the
RSA model at face value, but we reformulate it
in information-theoretic terms. We find that the
pragmatic listener model can be reconceived as
an update of the prior over worlds that can be
provided independently of the speaker’s actual
utterance. This update consists in a preference
for world states which are the most specific
to a given utterance in the set of possible ut-
terances given by the pragmatic context. Our
reformulation allows us to deduce general prop-
erties of pragmatic reasoning problems. As an
example, we show that RSA does not predict
certain quantity implicatures in the presence of
bell-curve priors.

1 Introduction

The “rational speech act” (RSA) model introduced
by Frank and Goodman (2012) recasts a broadly
Gricean view of language in Bayesian probabilistic
terms. As in the work of Grice (1975), the core
ideas underlying RSA are that dialogue participants
are rational agents who communicate efficiently by
reasoning over each other’s beliefs and the shared
communicative goal. The core assumption in the
RSA model is “. . . that listeners view speakers as
having chosen their words informatively — that is,
relative to the information that they would transfer
to a naive listener” (Frank and Goodman, 2014,
p.84).

The basic RSA model claims that a rational
(pragmatic) speaker will take into account how a
naive (literal) listener interprets an utterance, as-
suming it is true. The ideal (pragmatic) listener
reasons, in turn, about the pragmatic speaker, thus

also taking into account the nested reasoning over
the literal listener.

This model is meant to account for human deci-
sion making. Much of the support for RSA comes
from restrictive communication games in which
participants must pick a speaker’s intended referent
from a set of objects which may match or differ
on particular attributes (such as shape or colour)
given only a one word utterance. In certain cir-
cumstances, a pragmatic listener must take into
account both the shared features across objects that
are consistent with a given utterance, as well as
those features which are not shared, in order to dis-
ambiguate among referents for which the utterance
is ambiguous. According to Frank and Goodman
(2012), the predictions of the RSA model corre-
late strongly with human behaviour in such one
shot referential games. The RSA framework has
since been applied to a variety of linguistic puzzles
of ambiguity and optionality, including whether
plural predications will receive a distributive or col-
lective reading (Scontras and Goodman, 2017), and
whether null versus overt pronouns are chosen in
constructions which may feature pro-drop (Chen
et al., 2018), among others.

In the present work, we take the RSA model
at face value, but we reformulate it in explicitly
information-theoretic terms by calling on the no-
tion of information gain between the prior and pos-
terior distributions. Our reformulation provides the
following insights:

• While a common, algorithmic interpretation
of the RSA model suggests that agents reason
over each other’s reasoning states (listener-
speaker-listener), this formulation is not only
implausible, but unnecessary, as we show.
That is, one can reason in much more direct
terms.

• RSA does not, in fact, make correct predic-
tions about the implicatures expected in par-



Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue,
August, 22-24, 2022, Dublin.

ticular conversational contexts, according to
the Gricean underpinnings of RSA, and given
reasonable (bell-curve) priors.

In particular, we show that any given RSA model,
whether of a pragmatic listener or a pragmatic
speaker, may be presented merely as a filter on
what we will call a “pragmatic prior”; that is, a
prior over worlds or utterances which has been re-
conceptualised in information-theoretic terms, in
order to incorporate notions of specificity and infor-
mativeness. Given such a pragmatic prior distribu-
tion, any given occasion of interpreting an utterance
(or choosing an utterance, given some intended
message) requires only that the listener/speaker
renormalise this distribution with any incompatible
values removed.

There is some precedent for our proposal in work
by Scontras et al., which provides an information-
theoretic reformulation of the pragmatic speaker
model. More precisely, the authors characterise the
model in terms of the following formula (which, as
we will explain in the next section, incorporates a
parameter α setting the model’s temperature):

PS1(u|w) ∝ Truth(u,w)

∗ Informativeness(u)α

∗ Economy(u)α

Here, the term Truth(u,w) is a filter on the distri-
bution determined by the other two terms; that is,
it is valued as 1 if utterance u is true at world w,
and as 0 if it is false. In the present work, we take
the next logical step by showing that the pragmatic
listener model can be subject to the same kind of
reformulation. Consequently, both the pragmatic
speaker model and the pragmatic listener model
can be reduced to mere filters on their respective
pragmatic priors.

2 Background: RSA

RSA, as proposed by Frank and Goodman (2012),
assumes a set of possible utterances U and a set of
world statesW . World states w come with a prior
probability P (w), and utterances u come with a
cost C(u). Additionally, we have a relation l on
U and W such that l(u,w) = 1 if utterance u is
true at world state w, and l(u,w) = 0 otherwise.
We say that the tuple (U ,W, P, C, l) constitutes
a pragmatic interpretation problem. A solution
to such a problem consists in a specification of a
pragmatic listener, which is a function from U to

distributions overW . Given an utterance u ∈ U ,
it is assumed that the posterior distribution of the
pragmatic listener is computed on the assumption
that u is literally true. Thus we model the pragmatic
listener as taking for granted that its interlocutor is
adhering to the Maxim of Quality.

In its most common formulation, RSA models
a pragmatic listener as an agent which reasons
about a speaker, which, in turn, reasons about a
literal listener. To illustrate how this works, let
us consider a situation in which there is a box
which, at one point, contained 7 cookies, and it
is known that John ate at least 5 of them. Thus
U = {‘John ate x cookies’ | x ∈ [5, 7]}. (We let
the cost function C be constant across utterances.)
The set of possible world states corresponds to
those where some number w of cookies has actu-
ally been eaten. We choose the literal semantics to
allow for more cookies to have actually been eaten
than stated:

l(‘John ate x cookies’, w) = w ≥ x

Thus considering only relevant values of w, the
literal meaning l can be represented by the follow-
ing table.

w 5 6 7
‘John ate 5 cookies’ 1 1 1
‘John ate 6 cookies’ 0 1 1
‘John ate 7 cookies’ 0 0 1

2.1 The literal listener model

The literal interpretation of u is given by a Bayesian
update of P by l, which thus acts as a filter on P :

PL0(w | u) ∝ l(u,w)× P (w) (1)

In our example, we consider the prior P to be uni-
form, and thus, the family of distributions PL0(w |
u) is obtained by normalising each row of the above
table:

w 5 6 7
‘John ate 5 cookies’ 1/3 1/3 1/3
‘John ate 6 cookies’ 0 1/2 1/2
‘John ate 7 cookies’ 0 0 1

2.2 The speaker model

According to RSA, the speaker S is modelled as an
agent which produces a distribution over utterances
for each world state w that S might wish to convey:

PS1(u | w) ∝ exp[α×(log(PL0(w | u))−C(u))]



Proceedings of the 26th Workshop on the Semantics and Pragmatics of Dialogue,
August, 22-24, 2022, Dublin.

or, equivalently:

PS1(u | w) ∝
PL0(w | u)α

eαC(u)
(2)

Each parameter C(u) represents the cost of ut-
tering u. The role of the parameter α (where it is
assumed that α > 1), is to exacerbate the differ-
ences of literal fit among utterances. For α tending
to infinity, S chooses the utterance with the highest
utility U(u,w) = log(PL0(w | u)− C(u)) with a
probability of 1 (i.e., stochastic certainty).

In our example, if we let α = 4, then we obtain
the family of distributions PS1(u | w) by, first,
exponentiating by 4, and, second, normalising each
column. Dividing by the exponentiated cost has no
effect on the resulting distribution because it is a
constant that vanishes after normalising.

w 5 6 7
‘John ate 5 cookies’ 1 0.16 0.01
‘John ate 6 cookies’ 0 0.84 0.06
‘John ate 7 cookies’ 0 0 0.93

2.3 The pragmatic listener model

The pragmatic listener model PL1 refers to the
above speaker model when updating the distribu-
tion over world states:

PL1(w | u) ∝ PS1(u | w)× P (w) (3)

Since P is uniform in our example, we obtain the
family of distributions PL1(w | u) by once more
normalising each row.

w 5 6 7
‘John ate 5 cookies’ 0.85 0.14 0.01
‘John ate 6 cookies’ 0 0.93 0.07
‘John ate 7 cookies’ 0 0 1

This example illustrates some noteworthy points.
First, the core aspect of computing RSA models
is the application of normalisation steps. While
the normalisation factors of the nested speaker and
listener models are therefore crucial, they are left
implicit by the usual formulaic presentation of RSA
(Eqs. (1) to (3)). We will see below that making
these factors explicit brings insight.

Second, the formulation of RSA in terms of a
listener who reasons about a speaker who reasons
about a literal listener makes it difficult to build an
intuition of what the model predicts. For instance,
in our example, RSA predicts, to a large extent, that
‘John ate x cookies’ implicates ‘John ate exactly x
cookies’. But does it predict a similar implicature

for variations of the same example, for instance
using another prior? One might intuitively expect
it to do so, but, as we demonstrate below, it does
not always make this prediction.

Third, a pragmatic listener is conceived of as
reasoning about all possible combinations of world
states and utterances simultaneously, which is large
for any non-trivial example. Indeed, it is psycho-
logically implausible that such a process is at play
in the listener’s mind.

The purpose of the next section is to reformu-
late RSA in terms that are easier to grasp, while
addressing these weaknesses.

3 Information-theoretic reformulation

We carry out our reformulation in terms of informa-
tion theoretic concepts; in particular, information
gain. To illustrate our points, we use a variation of
the example from the previous section, in which
the alternative utterances differed along some nu-
merical value which provided a lower bound on
compatible world states. The main differences in
our current example will be the following:

• The relevant numerical variable is now con-
tinuous. Thus alternative utterances now have
the form ‘John ran x kilometres’.

• The prior distribution over world states (i.e.,
over the number of kilometres John ran) is
no longer uniform. We instead use a logistic
distribution, defined below. (A logistic distri-
bution is similar to a normal distribution, but
it simplifies our calculations.1 Our qualitative
conclusions will hold just as well in the case
of a prior which is normally distributed.)

w
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1The logistic distribution is leptokurtic. That is, it has
fatter tails than the normal distribution, i.e., more outliers.
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The above plot represents a prior for the number of
kilometres John ran given by a logistic distribution
with a mean of 4. Thus to obtain PL0(w | u) for
any u of the form ‘John ran x kilometres’, one
should crop this distribution at x (on the left, so
only the right part remains) and renormalise.

3.1 Literal information gain

The instrumental concept underlying our
information-theoretic reformulation is the Kull-
back–Leibler (K-L) divergence, which measures
the information gained when updating a prior
belief taking a distribution P to a posterior belief
taking distribution Q. It is defined as follows:2

DKL(Q ‖ P ) = −
∑
x∈X

Q(x) log

(
P (x)

Q(x)

)

In terms of this definition, we may compute the lit-
eral information gain provided by an utterance u as
the K-L divergence between the prior on worlds P ,
and the posterior Qu(w) = PL0(w | u) computed
by L0 (which takes u literally):

Qu(w) ∝ l(u,w)× P (w)
GL0(u) = DKL(Qu ‖ P )

Because l(u,w) takes 0 or 1 values, the following
reformulation of GL0 is possible, by Theorem 1
(given in Appendix A):

GL0(u) = − log
∑
w∈W

l(u,w)× P (w) (4)

For an alternative, more compact presentation of
GL0 , one may first define the following prior over
utterances associated with the literal listener:

PL0(u) =
∑
w∈W

l(u,w)× P (w) (5)

That is, PL0 is the probability associated with u
by L0, given the prior over world states. GL0 may
then, instead, be rendered as follows:

GL0(u) = − logPL0(u) (6)

In our running example, which uses a logistic
prior, we then have the following information gain
for the literal listener (GL0) for utterances of the
form ‘John ran x kilometres’:

u
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The flat regime toward the left of the plot is ex-
plained by the fact that utterances of ‘John ran x
kilometres’, where x is lower than the mean of the
prior, do not provide much information: they are
compatible with most world states. The steadily in-
creasing gain after the mean is explained by the con-
verse: these utterances are incompatible with most
world states. Furthermore, in this part of the plot, a
given increase in the value of x leads to a roughly
constant increase in information gain. Thus the
information gain here increases in a roughly linear
relationship with utterance strength. Such an in-
crease, in turn, rules out a roughly constant propor-
tion of the remaining possible world states, given
the log scale associated with information gain.

3.2 The reformulated speaker model

With the above notion of information gain in mind,
we can make the normalisation factor in PL0 of
Eq. (1) explicit, thus turning the proportionality
relation into an equality:

PL0(w | u) =
l(u,w)× P (w)∑

w1∈W l(u,w1)× P (w1)

=
l(u,w)× P (w)

PL0(u)

= l(u,w)× P (w)× eGL0
(u)

One can now substitute PL0(w | u) by l(u,w) ×
P (w)× eGL0

(u) in the definition of PS1 (Eq. (2)),
and simplify the result. Note that making the nor-
malisation factor explicit was necessary to carry out
such a substitution, which is only valid for strictly

2The notation ‘P (w)’ normally suggests that the described
distribution is discrete, in which case weighted averages are
computed with a sum. We will use these notations throughout,
since they are easier to present than density functions and
integrals, a choice we make even though our running example
uses a continuous variable.
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equal (not just proportional) terms.

PS1(u | w) ∝
PL0(w | u)α

eα×C(u)

∝

(
l(u,w)× P (w)× eGL0

(u)
)α

eα×C(u)

∝ l(u,w)α × P (w)α × eα×(GL0
(u)−C(u))

∝ l(u,w)× eα×(GL0
(u)−C(u)) (7)

The last step of rewriting (7) is justified because
(i) the exponent α of l(u,w) has no effect, since
l(u,w) ∈ {0, 1}, and (ii) the term P (w) does not
depend on u, and thus does not affect the propor-
tionality relation.

At this point, we may introduce our reformula-
tion of the speaker model as a filter on a pragmatic
prior. We do so by first defining this prior; in par-
ticular, we may view the second factor in (7) as
proportional to a speaker’s pragmatic prior over
utterances:3

PS1(u) ∝ eα×(GL0
(u)−C(u)) (8)

Note that this reformulation shows that the speaker
a priori favours utterances whose information gains
are larger than their costs, a preference which is
exacerbated by high values of α.4 We may now
formulate PS1(u | w) as a filter on the above prior,
provided by l(u,w):

PS1(u | w) ∝ l(u,w)× PS1(u) (9)

As an algorithmic model of the speaker’s reasoning,
the above proportionality relation can be seen as
implying that a “table” of utterances and their rel-
ative degrees of preferredness (according to infor-
mativeness and cost) has been constructed a priori.
Upon choosing a world state w to communicate,
the speaker may then filter out those utterances
incompatible with w, in order to then select an ut-
terance among those that remain. In other words,
the utility of an utterance (U(u) = GL0(u)−C(u))
is independent of the world state w that the speaker
wishes to communicate.

3 Given an infinite set of possible alternative utterances
(and, indeed, in our running example), PS1(u) need not define
a probability distribution. This is not a problem in practice, as
the speaker and listener posteriors, PS1(u | w) and PL1(w |
u), will nevertheless be proper probability distributions.

4One can additionally choose cost to be proportional to
utterance length, following Lassiter and Goodman (2013).
Given such a definition of cost, the speaker will prefer utter-
ances with a high (literal) information density.

In our running example, PS1(u | w) is thus ob-
tained by cropping PS1(u) on the right (and then
renormalising). The following plots exemplify
PS1(u | w) for two different values of w, prior
to normalisation: 2.5, and 7 (where α = 4 in each
case).
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As can be seen, PS1(u|w) is nearly constant for
low values of u, but it shoots up exponentially once
u exceeds the mean of the prior over world states.
In other words, if choosing an utterance whose
strength exceeds the mean of the prior is at all
possible, then the speaker will most definitely do
so. If only utterances whose strength is below the
mean are possible, then the speaker will still be
biased towards stronger utterances, but not to the
same degree.

3.3 Normalisation via information gain

The above formulation of PS1 provides only a pro-
portionality relation, which needs to be normalised,
in order to obtain a full definition. To do so, we may
apply the same information-theoretic treatment to
the speaker model as we did to the literal-listener
model. First, we make explicit the normalisation
factor in PS1 ; then, we encode this factor in terms
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of information gain, relying again on Theorem 1:5

PS1(u|w) =
l(u,w)× PS1(u)∑
u1
l(u1, w)× PS1(u1)

= l(u,w)× PS1(u)× eGS1 (w) (10)

Here, GS1(w) is the information gain on the dis-
tribution PS1 provided by w. This gain is high if
l(u,w) allows the speaker to discard many utter-
ances u, where PS1(u) is high. We refer to GS1(w)
as the specificity of w; in general, the function
GS1 is determined by the pragmatic interpretation
problem (U ,W, P, C, l), together with the model
temperature α.

In our running example, we obtain the following
contours of specificity for various values of α:6

w
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These curves can be analysed as sequences of three
different regimes. First, there is asymptotic be-
haviour around 0: values near 0 are nearly impos-
sible by virtue of excluding most a priori possible
utterances, and thus they provide an information
gain tending to infinity. The transition to the next
regime happens very quickly, around 0.2. The mid-
dle regime is a small slope with a roughly flat de-
crease, which lasts up to around the mean of the

5Note that in practice, PS1 in (10) may be substituted by
the right-hand side of the proportionality relation in (8), since
the relevant normalisation factor is cancelled out.

6Computed by taking

GS1(w)

= − log(
∑
u1

l(u1, w)× PS1(u1))

= − log(
∑
u1

l(u1, w)×
eα×(GL0

(u1)−C(u1))

k
) (by (8))

= − log(
∑
u1

l(u1, w)× eα×(GL0
(u1)−C(u1))) + log(k)

and choosing log(k) = 0 (or k = 1). Note that the resulting
contours are therefore independent of the normalisation factor
k.

prior distribution. Above the mean of the prior,
the third regime kicks in: there is another roughly
flat decrease, but, this time, with a much larger
slope. The difference in slope is explained by the
following two facts: (i) that the literal information
gains associated with utterances increase drasti-
cally above the mean of the prior (see the plot of
(Eq. (6))), and (ii) that these information gains enter
into the calculation of specificity for world states
above the mean, as these world states become com-
patible with more utterances. Moreover, for large
values of α, this slope is more pronounced.

The reader may find it odd that there are negative
specificities in these plots, given that the distribu-
tions that these specificities come from are obtained
as filters of the pragmatic prior over utterances.
Negative values appear because PS1 is not, strictly
speaking, a probability distribution over utterances
(see Footnote 3). Fortunately, negative specificities
do not pose a problem in practice. For example,
once we get to the pragmatic listener model, they
may be seen as having been shifted by a positive
constant during normalisation (given that the pos-
terior itself will be multiplied by a constant).

3.4 The reformulated pragmatic listener
model

If we now substitute the definition of the speaker
model of Eq. (10) into the definition of the prag-
matic listener model of Eq. (3), we may obtain the
following new definition of the latter:

PL1(w | u) ∝ PS1(u | w)× P (w)
∝ l(u,w)× PS1(u)× eGS1 (w) × P (w)
∝ l(u,w)× eGS1 (w) × P (w) (11)

The justification for removing the term PS1(u) in
the fourth line is the fact that u is fixed, and thus the
proportionality relation does not depend on it. Now
note that we may define the following pragmatic
prior for the listener model:

PL1(w) = eGS1 (w) × P (w) (12)

Given Eq. (11), the pragmatic listener model may
therefore instead be presented as a filter on this
prior:

PL1(w|u) ∝ l(u,w)× PL1(w) (13)

Equation (13) constitutes the fully reformulated
RSA model. Reading it out, we see that L1 chooses
the distribution over world states in a way very
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similar to L0. Namely, both merely apply a fil-
ter to some prior. In the case of L0, the relevant
prior over world states w is P (w), i.e., the “literal”
prior; L1, instead, uses the pragmatic prior PL1(w),
which multiplies the literal prior by a measure of
specificity, defined as the exponentiated informa-
tion gain associated with the pragmatic speaker. In
sum, the RSA model has it that all pragmatic effects
are attributable to the relative specificity of world
states, relative to the set of possible utterances.

In our running example, the factor eGS1 (w) con-
tributing specificity has the following shape:

w
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The following plot of PL1 illustrates the effect that
this factor has on the prior P (w) over world states
w (for various values of α):
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The different regimes of specificity can thus be
seen to have the following effects on PL1 . Toward
the left of the plot, there is an asymptote greatly
favouring tiny values of w. Meanwhile, the right
of the plot is essentially zeroed out, with a smooth
transition, and the peak has also shifted leftward.
Thus the bulk of the distribution is shifted to the
left, in comparison to the prior P . This shift is
larger when α is large; indeed, we would expect
that for large enough values of α, the peak will
“merge” with the asymptotic behaviour around zero.
Unfortunately, our numeric tool cannot handle very

large values of α, so we are not able to produce the
corresponding plot.

Analogous to the literal listener, one can obtain
PL1(w | u) for any u by cropping the pragmatic
listener’s prior distribution on the left of the plot
and renormalising. Consider, for instance, the ut-
terance ‘John ran 2.4 kilometres’. In this case, we
crop the prior distribution at 2.4:
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We indeed observe the effect of a Gricean impli-
cature when α = 20, insofar as the mode of the
resulting distribution is the value uttered. This ef-
fect occurs due to the fact that the pragmatic prior
distribution for this value of α happens to have a
sharp drop after the uttered value. For lower val-
ues of α, however, the observed pragmatic effect is
merely to shift the distribution to the left, relative
to the literal prior. What results does not, in any
obvious way, reflect a Gricean implicature.

4 Discussion

4.1 Algorithmic plausibility
At first glance, the psychological plausibility of
RSA as an algorithmic model (in the sense of Marr
(1982)) seems highly suspect; for example, it re-
quires the pragmatic listener to consider all compat-
ible combinations of world states and utterances on
each occasion of utterance interpretation (though
see, e.g., White et al. (2020); Zaslavsky et al. (2021)
for recent attempts to address the psychological
principles grounding RSA models). In principle,
the space of world states includes all those literally
compatible with the observed utterance, requiring
the listener to deal with a very large space of pos-
sibilities, in order to interpret a single utterance.
Because our reformulation of RSA as a mere fil-
ter on a prior is functionally equivalent to RSA
as traditionally conceived, it provides a new lens
into the issue of algorithmic plausibility. Neither
the computation of the literal listener model, nor
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the computation of the pragmatic speaker model
need directly enter into the pragmatic listener’s
computation of a posterior distribution. Instead,
the contributions of the literal listener and prag-
matic speaker in the original formulation of RSA
are now repackaged as part of the prior. As a re-
sult, these contributions may be learned and then
“memorised”;7 utterance interpretation, meanwhile,
becomes a process of merely eliminating alterna-
tives from this re-conceived prior. (Likewise for
the pragmatic speaker, whose prior over utterances
need not depend on the world state that it wishes
to communicate.)

A consequence of this fact is that literal interpre-
tations and pragmatic interpretations (as according
to RSA) may be viewed as updates of the same
kind: given an utterance and the right prior, both
styles of interpretation involve the elimination of
world states incompatible with the utterance, fol-
lowed by a renormalisation step. From this per-
spective, the RSA framework is not committed to a
particular algorithmic implementation of the prag-
matic interpretation process beyond what would be
required for literal interpretation.

Relatedly, we do not require 3-d (or density)
plots with axes representing utterance strength and
world state, respectively, in order to illustrate the
effect obtained by a pragmatic listener from sequen-
tial renormalisation steps. Our theoretical result
may thus be framed as the observation that, in such
a 3-d plot, and for a semantics of the sort u ≤ w,
any 2-d slice acquired by fixing a value for the
utterance u is just like the slices associated with
weaker utterances, but for a step of cropping and
renormalisation.

4.2 Implicature
As mentioned in Section 3.4, the implicature ex-
pected based on Grice’s Cooperative Principle (in
particular, Quantity) is not obtained by the prag-
matic listener model in our running example. The
expected implicature is an “exactly” interpretation
associated with the numeral occurring in the ut-
terance, while what the model obtains is merely a
decrease in the mode of the posterior, in compari-
son to the prior. (This result persists even for large

7A reviewer points out that our reformulation of RSA in
terms of a pragmatic prior generates questions about how such
a prior might be learned in the first place. While we won’t
provide an account of semantic learning here, we note that the
two terms in (12) representing information gain and the prior
over worlds suggest that they may be learned independently
of one another.

values of α.)
Nevertheless, we can show that the expected im-

plicature occurs when α tends to infinity.8 This
is because the utterance ‘John ran x + ε kilome-
ters’ is always, if only slightly, more informative
than ‘John ran x kilometers’; thus it will always be
preferred by the pragmatic speaker for legitimate
values of α, if only by a small amount. As a re-
sult, only w = u will be admissible by a pragmatic
listener, in the limit, where probabilistic choice
becomes categorical.

Intriguingly, the theoretical result that the impli-
catures expected are not always generated may, in
fact, reflect some aspects of real human behaviour
in certain settings. For instance, Sikos et al. (2021a)
found that, even in the non-interactive one-shot
games against which RSA models have been most
extensively tested, consistency with human perfor-
mance was driven by cases in which non-Gricean
behaviour was, in fact, predicted by the model. In
such cases, the RSA model’s prior overrode the
pragmatic effects associated with specificity. Thus
perhaps ironically, RSA’s failure to predict Gricean
implicatures may sometimes contribute to its em-
pirical successes. As Sikos et al. note, however,
RSA does not reflect human behaviour better than a
literal semantic model does on such tasks, making
it difficult to consider this property a boon.

5 Conclusions and future Work

RSA models can be critiqued on a number of fronts,
both theoretical and empirical. In the present work,
we have focused on the algorithmic nature of the
model, in order to show that it may be reformu-
lated in a manner which appears relatively attrac-
tive from a psychological perspective (and which
is easier to compute in simulations). We have also
shown that doing so brings to the fore the model’s
unexpected (i.e., non-Gricean) behaviour when it
is faced with certain priors: a single plot illustrates
the relationship between utterance and posterior in
the pragmatic listener model, revealing limits on
the conditions under which expected implicatures
are actually generated.

On the empirical side, critics of RSA have em-
phasised the artificial and non-interactive nature
of the tasks used to verify the model’s predictions,
pointing out, for example, that in less constrained
contexts, people often produce non-optimal utter-

8That is, as α tends to infinity, PS1(u | w) = δu−w,
where δ is the Dirac δ function.
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ances, e.g., by over-specification (Gatt et al., 2013).
Sikos et al. (2021a) have provided evidence sug-
gesting that, even in the restricted reference game
domain, people’s judgements do not always ac-
cord with rational choice, as defined by the model.
These authors show that, while speakers behave
as the model would predict, listeners do not, and
a baseline literal listener model outperforms RSA.
It has also been argued that, even where RSA pro-
vides a good fit to human data, it does so when other
parameters, such as utterance cost, are implausible
(Wilcox and Spector, 2019). Moreover, simulation
models have called into question whether or not
reasoning over an interlocutor’s intentions is gener-
ally necessary, if, for example, a repair mechanism
is available (Van Arkel et al., 2020).9

By providing a functionally equivalent reformu-
lation of RSA, we have shown that, for both the
pragmatic listener and speaker models, the merit of
a given world state or utterance can be expressed
and evaluated in its own terms, making both models
analogous to the literal listener model. Succinctly,
RSA models are just filters of some chosen prior,
in which merit is predetermined. It is thus straight-
forward to imagine a generalisation of our reformu-
lation in which information gains are not always
computed “rationally”. Rather, according to such
hypothetical alternative models, a speaker might
compute a more approximate information gain for
each utterance and act accordingly. Similarly, a
listener might compute a more approximate notion
of specificity with respect to a set of possible utter-
ances, which may then be used to tweak the prior.
Such “approximately rational” priors might then be
refined over time as more pragmatic problems are
encountered.10 We leave this possibility for future
work.
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A Proofs

Theorem 1. If P (x) ∝ f(x) × Q(x), and the
codomain of f is {0, 1}, then

DKL(P ‖ Q) = − log

(∑
x

f(x)×Q(x)

)
Proof. Let P (x) = αf(x) × Q(x), with α con-
stant.

First, we have

α =
1∑

x f(x)×Q(x)
(14)

Indeed, P is a distribution, and we have∑
x

P (x) = 1∑
x

αf(x)×Q(x) = 1

α
∑
x

f(x)×Q(x) = 1

Second, we have

αf(x)× log(αf(x)) = αf(x) × log(α) (15)

This can be seen by case analysis.

• If f(x) = 0, then

αf(x)× log(αf(x))

= 0

= αf(x)× log(α)

The first equality follows from the fact that, in
general, lima→0(a× log(a)) = 0.

• If f(x) = 1, then

αf(x)× log(αf(x))

= α log(α)

= αf(x)× log(α)

Using the above two facts, we can compute:

DKL(P ‖ Q) =
∑
x

P (x)× log(
P (x)

Q(x)
)

=
∑
x

Q(x)× αf(x)× log(αf(x))) by def of P

=
∑
x

Q(x)× αf(x)× log(α) by Eq. (15)

= α log(α)×
∑
x

f(x)×Q(x)

= α log(α)× α−1 by Eq. (14)

= log(α)

= log(
1∑

x f(x)×Q(x)
) by Eq. (14)

= − log(
∑
x

f(x)×Q(x))
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