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Abstract
Spoken Dialogue Systems (SDS) are used to
interact with intelligent agents through natu-
ral language. Speech processing errors may
cause the system to fail to generate an ap-
propriate response. In this paper, we present
a novel framework for understanding spoken
dialogue in which utterance analysis is esca-
lated through a multi-level system according
to the feedback retrieved at the syntactic, se-
mantic, and contextual/topic level. Analysis
is applied incrementally at each level as the
system attempts to resolve the uncertainty sur-
rounding utterance interpretation. We demon-
strate how our multi-level approach can be in-
tegrated with other SDS components to im-
prove its ability to recognize spoken task com-
mands. We evaluate this by comparing the in-
terpretation accuracy of utterances from two
task domains given as input to an SDS, un-
der two experimental conditions: one with the
multi-level framework and one without.

Figure 1: Typical spoken dialogue system. At each turn
t, input speech is converted to an utterance, ut, which
the Natural Language Understanding component maps
to an internal representation, st of the human’s intent.
The Dialogue Manager uses this to update the agent’s
belief state in the Knowledge Base, bt and then infers
a natural language form, nt from Natural Language
Generation which initiates a response, rt to the Text-
to-Speech component.

1 Introduction

Humans use Spoken Dialogue Systems (SDSs)
to interact with intelligent agents using speech-
based natural language (De Mori, 1997; Zue and
Glass, 2000; Jokinen and McTear, 2009). Figure 1
shows components typically found in such systems
(Scheutz et al., 2019; Young et al., 2013). Here,
the Automatic Speech Recognizer (ASR) recog-
nizes the human’s utterance, ut, and sends it to the
Natural Language Understanding (NLU) compo-
nent. However, problems may arise in the ASR
component which can propagate through the sys-
tem and cause it to fail to generate an appropriate
response. For example, the ASR may recognize
the word “Iraq” instead of “a rock” (Sarma and
Palmer, 2004), or it may hear a novel word it has
not yet learned (Scheutz et al., 2017). Alternatively,
the user may believe the system to be capable of
retrieving the weather report when its domain is
retrieving movie listings; in such a case, the system
will need to respond to the user’s out-of-domain
(OOD) request (Tur et al., 2014). Finally, in a mul-
tilingual environment the SDS may switch between
different languages, e.g., a robot that a human can
query in English or Japanese to initiate a Wikipedia
search (Wilcock and Jokinen, 2015).

The ASR cannot recognize what it does not know
about, and in the cited examples the researchers
solved this problem by extending the ASR vocab-
ulary or by adjusting the prior probability of the
hypothesized word sequences. However, detect-
ing and interpreting the user’s true intention, and
selecting an appropriate response given noisy hu-
man speech and ASR transcription errors, requires
a method for communicating between SDS com-
ponents. For example, the NLU, Knowledge Base,
and Dialogue Manager components can request the
recognition subsystem to reinterpret the utterance
in the event of say, a processing failure.
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In this paper, we show a novel framework for
understanding spoken dialogue in which utterance
analysis is escalated through a multi-level system
involving interpretation on syntactic, semantic, and
contextual/topic levels (see Figure 2). Analysis is
applied incrementally at each level as the system
attempts to resolve the uncertainty surrounding ut-
terance interpretation. Links to other SDS compo-
nents from each of the levels can affect the agent’s
beliefs and, conversely, other components can sig-
nal the framework to reinterpret the utterance. This
may occur in the context of, for example, a new
topic. To our knowledge, no other approach has
demonstrated the use of such a multi-tiered sys-
tem for improving accuracy in the SDS’ ability to
recognize spoken task commands. This paper pro-
ceeds as follows. In Section 2, we discuss prior
approaches to resolving out-of-domain requests,
using context to improve ASR and parser perfor-
mance, and learning novel words. Section 3, situ-
ates these approaches in our framework. We also
discuss how topic detection is used to determine
context. Section 4, discusses the framework demon-
stration and evaluation, using utterances drawn
from two task domains in two conditions: one with
the framework and one without. Finally, Section 5,
examines the advantages, disadvantages, and lim-
itations of this approach and framework improve-
ments.

2 Related Work

Research in improving NLU in task-oriented dia-
logue systems and intelligent agents can be mo-
tivated as follows. One way to ensure reliable
performance of speech recognition for SDSs is
to make a closed-world design assumption, and
limit their operation to well-defined domains (for
examples, see Lane et al. (2005)). This could be ac-
complished by representing the dialogue model as
a finite state system using a pre-defined state tran-
sition network, which assumes that the dialogue
is known in advance (McTear, 1998). This ap-
proach is not resilient to input outside the agent’s
domain, and so frame-based dialogue systems have
been proposed. In these, the model attempts to
fit the dialogue into frame slots (i.e., a “form”)
corresponding to an action or utterance (Xu and
Rudnicky, 2000). However, these systems struggle
when utterances fail to fit into a frame. Finally,
agent-based systems have been developed for more
advanced dialogue management with interactive

agents (Allen and Perrault, 1980; Cohen and Per-
rault, 1979). These approaches typically catego-
rize utterances into speech acts (Searle and Searle,
1969) and perform inference or planning based on
a mental model of the interlocutor. Such systems
make use of robust symbolic representations of
an agent’s beliefs, desires, intentions, and other
properties, allowing for mixed-initiative interaction
(Rao and Georgeff, 1991). This is the dialogue
management approach used in the present system.

It is desirable that the human be able to com-
municate in a natural and flexible manner with
the agent. To enhance usability, NLU systems are
built on open-world assumptions. In these systems,
the user may provide both in-domain and OOD
inputs, the latter of which may be unsupported by
the system. Accepting OOD inputs could lead to
errors propagating through the system, which may
lead to undesirable responses unless it can reliably
distinguish between the two and process them ac-
cordingly. Context detection is one approach re-
searchers have used for OOD. Veale et al. (2013)
discuss a method for applying top-down contex-
tual bias based on the expected dialogue turn to
a neural speech recognition system to improve its
performance. Sarma and Palmer (2004) compute
the likely contexts of all words in an ASR system
vocabulary by performing a lexical co-occurrence
analysis using a large corpus of output from the
speech system. This is used to find the likely con-
text for query words, and the system uses this to
identify similarly-sounding, but erroneous query
words.

Topic detection may also be used to infer context.
Lane et al. (2006) proposed a detection framework
which makes use of the classification confidence
scores of multiple topics and applies a linear dis-
criminant model to perform in-domain verification.
Lane et al. (2005) describe an architecture which
combines topic detection with topic-dependent lan-
guage models for use in a multi-domain SDS. Ac-
cording to the researchers, their approach allows
the user to freely switch among domains while
maintaining a high-level of accuracy.

However, topic approaches use a bag-of-words
which, along with those that are feature-based (Tur
et al., 2014), have difficulty dealing with unknown
words, e.g., rarely used expressions and neolo-
gisms. To overcome this problem, Oh et al. (2018)
describe a method in which OOD sentences occur-
ring in a dialogue are detected based on sentence
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Figure 2: Multi-level framework for understanding spoken dialogue encompassing prior approaches.

distances. The distances are measured by sentence
embedding vectors using RNN (Recurrent Neural
Network) encoders and incorporate an attention
mechanism.

Alternatively, Scheutz et al. (2017) describe a
mechanism for detecting the intentional use of
novel words in a one-shot learning system. Here,
the ASR is modified such that when an unknown
token is generated by the acoustic model, its cor-
responding word-level unit is discovered from the
acoustic features. A nearest-neighbor classifier is
used to determine whether the discovered unit rep-
resents the first member of a new word-class of the
vocabulary and, if so, the class and example are
added; otherwise it is added to an existing class.

In addition to using context to switch among
language models, topic modeling can be applied to
syntactic SDS components. Mukherjee et al. (2017)
use Latent Dirichlet Allocation (LDA) to improve
parser performance across multiple domains. LDA
is used to find the topic structure in a document,
which is a single sentence here. The sentence is
assigned to the most likely topic and an “expert”
parser for the topic is trained for syntactic analysis.

For situations where the domain is constrained,
yet the user will be using natural language with its
attendant disfluencies and irregularities, the ASR
is likely to not recognize domain-specific com-

mands. For this type of system, Leuski and Traum
(2010) describe a statistical classification compo-
nent which, in order to automate natural and flex-
ible human-agent dialogue, identifies the best re-
sponse to user input by estimating the closest possi-
ble match within its training set if a precise match
cannot be found.

Finally, Chen et al. (2013) describe how informa-
tion from multiple non-ASR components in their
conversational spoken language translation system
can be combined with strong baseline ASR error
detector features and used to improve overall ASR
error rate. The system contains built-in error de-
tection modules that pinpoint regions in the input
where the ASR is likely to fail, including a con-
fidence estimator of the language translation (i.e.,
English-Iraq). In addition, the posterior word prob-
abilities from a named entity detector is used to
improve out-of-vocabulary word recognition.

In this section, we reviewed literature represent-
ing the main approaches to resolving OOD inputs
and improving ASR performance. The contex-
tual approaches (e.g., topic modeling, word co-
occurrence, statistical classification) have the effect
of changing the prior probabilities of the trained
ASR by making a selection from multiple language
models (Mukherjee et al., 2017; Lane et al., 2006,
2005; Sarma and Palmer, 2004), biasing the ASR
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word hypothesis (Veale et al., 2013), or discrimi-
nating among similar interpretations (Leuski and
Traum, 2010). An alternative approach is to extend
the ASR vocabulary when a novel instance of a
word class is detected as in Scheutz et al. (2017).
Chen et al. (2013) used a combination of the two
approaches. In the following section, we will dis-
cuss how these approaches have been integrated
with some, but not all, of the components of the
SDS framework.

3 Multi-level Framework

Our framework consists of three possible levels of
utterance interpretation: syntactic, semantic, and
context. The purpose of the first level is to gener-
ate an interpretation of the user’s meaning using a
syntactic analysis of the utterance. For example,
an utterance such as “pick up the red box” can be
easily parsed along strict syntactic rules, generat-
ing a semantic form for the utterance by means of
these syntactic rules. However, a more complicated,
non-grammatical utterance such as “the red box,
pick that up maybe” may violate expected syntactic
rule structure. Thus, we attempt to handle unex-
pected utterances with a second level of interpreta-
tion. This level bypasses any syntactic assessment
entirely; it attempts to guess directly at the seman-
tics of the user’s intent by finding which group of
semantically-linked utterances is most similar in
word content to the target utterance. Here, a classi-
fier is used to select the most likely interpretation
based on the utterance’s similarity to previous ut-
terances which the classifier has been trained on.
For example, “the red box, pick that up maybe” is
assessed as most similar to “pick up the red box”,
and is assumed to have the same meaning (and
therefore the same semantic form). Both of these
levels return a confidence score to allow the Hy-
pothesis component to select between the semantic
form produced by the classifier and the semantic
form produced by syntactic analysis (in this case,
the semantic form may be in predicate logic, i.e.,
pickUp(self,box(red))). At the third level, the con-
text of the utterance is analyzed and used to restart
and inform connected components to reinterpret
the utterance using, for example, a new language
model, classifier, or parser.

In the legend of Figure 2, we situate selected
prior work in the framework, assigning them to the
syntactic, semantic, or context levels in accordance
with their approach to improving SDS performance.

We place Scheutz et al. (2017) “One-shot Spoken
Learning” in the syntactic level as they assume an
unrecognized speech token may be a novel word.
After a pattern analysis of the acoustic features,
their system attempts to place the new token in
the vocabulary and interprets its grammar function
within the syntactic context of the rest of the sen-
tence. This flow is shown by the solid red connec-
tions in the figure. However, to recover the label of
the word so that the agent’s text-to-speech system
can say it back, the phonemic sub-units within the
word feature must be recovered and mapped to the
pronunciation dictionary. The dotted red line indi-
cates the required connection for this capability.

We situate the NLU system described by Leuski
and Traum (2010) in the second, semantic level as
it makes no assumption that the syntactic form is
correct. Level 2 uses a statistical classifier to gener-
ate multiple similar interpretations of the utterance,
selecting the one with the highest confidence score
and sending it to the Pragmatics component for
intention analysis; these connections are shown by
the solid gold lines in the figure. The classifier com-
ponent could ask for a back-off and reinterpretation
of the utterance if the highest confidence score falls
below a specific threshold; the connections for this
additional capability are indicated by the dashed
gold lines.

One particular benefit of this multi-level frame-
work is that it allows for the combination of a
rule-based approach to NLU (the parser) with a
machine-learning approach to NLU (the classifier).
Alone, a rule-based approach hardly ever reaches
the broad accuracy of state-of-the-art systems that
use machine learning. However, with lack of ex-
plainability being a key weakness of machine learn-
ing, the machine-learning approach by itself rarely
offers any clear introspective explanation of how
or why it arrived at its results, unlike a rule-based
approach which can provide the rules and syntactic
definitions behind the reasoning of any particular
parse. With a trained classifier able to outperform
the strict limitations of the rule-based parser by
finding the closest possible expected sentence to
the user input, and a parser able to provide syn-
tactic explanation for any expected sentence, this
multi-level architecture can surpass the weaknesses
of both approaches.

The basis for the context level 3 is its ability to
use topic detection to infer utterance context and
thus we situate the hierarchical topic classification
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of Lane et al. (2005) in that level. In their imple-
mentation, the researchers describe a system which
can detect in- and out-of-domain utterances, and
freely switch among several topic-dependent lan-
guage models. In the figure, the connections and
components for this system are shown in blue; how-
ever, we indicate by the blue dashed line that there
could be additional connections that could further
improve the interpretation. New connections from
the Knowledge Base, Pragmatics, and Classifier
components allow them to request a back-off and
reinterpretation of the utterance by inferring its con-
text through topic detection. Connections from the
selector back to those components can signal that
an alternative, topic-dependent classifier, pragmat-
ics, KB model should be used.

We also situate in level 3, the system described
in Mukherjee et al. (2017) which creates topic-
specific datasets that are then used to train expert
parsers. This system is shown in the green box in
the figure without a solid line connection to the
Selector because the researchers have evaluated the
expert parsers individually and do not specify a
method for freely selecting from among language
models. The green dashed lines show the connec-
tions to Topic Detection and from the Selector to
indicate this added capability.

Finally, we situate the dialogue contextual bias
signal system described in Veale et al. (2013) in
level 3. Rather than using a topic model to infer
bias, the authors use the knowledge of common di-
alogue exchange patterns contained in the dialogue
Manager to develop a bias signal for the ASR com-
ponent (shown as a solid brown line in the figure).
This is used to change the words’ prior probabilities
in the ASR, influencing word selection according
to dialogue context. The authors describe this sys-
tem as a biologically plausible cognitive model
based on human perceptual decision making. As
such, it provides an interesting avenue for further
research into human-like ways to improve speech
recognition.

3.1 Implementation

We implemented the multi-level framework shown
in Figure 2 in the DIARC cognitive robotic archi-
tecture (Scheutz et al., 2019). The implementa-
tion consists of the ASR, Topic Detection, Selector,
Topic-Dependent Language Models, Parsers, Clas-
sifier components, and Pragmatics. The ASR is
based on the chain model developed using Kaldi

for the ASpIRE Challenge and trained on Fisher
English (Harper, 2015; Povey et al., 2011). For
parsing, we used a symbolic, rule-based parser,
and for the classification component, an implemen-
tation which is part of the NPCEditor platform
(Leuski and Traum, 2010).

Figure 3 shows that the processing flow begins
with a spoken utterance that is transcribed imper-
fectly by the ASR component. In a single-level
system, the utterance follows the blue line to the
syntactic parser, which attempts to parse the mean-
ing into a semantic form and send it along the blue
line to the pragmatics component for extraction and
further processing. In the multi-level system, the
utterance is sent both to the parser and classifier
(brown lines), which then each send the pragmat-
ics component their own interpretation of the ut-
terance’s meaning along with a confidence score.
For the classifier, this confidence score rates the
utterance’s similarity to the closest utterance in the
classifier’s training set (though if this score is below
a predefined confidence threshold (0.6) it rounds
the score to 0). For the parser, the confidence score
is either 1.0 to signify that it was able to find a valid
parse, or 0, in cases where no parse was able to be
found.

The pragmatics component determines the high-
est score between the parser and classifier and picks
the respective interpretation for further processing
by the rest of the dialogue system. If the parser
fails and the classifier cannot find a semantic inter-
pretation with score > 0.6, then the brown line on
the “No” branch is followed to the Topic Detector.
If the topic has changed, the Selector will switch to
a generic language model that is a mixture of topic
unigrams, and the utterance will be reinterpreted.
If there was no topic change, the framework as-
sumes there cannot be a valid interpretation, and
will generate an appropriate response to the user.
The generic LM is used so that the Topic Detec-
tor has a basic utterance to which it infers a topic
distribution. The distribution is used to select a
domain-specific LM, and the utterance is reinter-
preted using the new LM.

3.2 Topic Detection and Model Training

Prior to evaluating the multi-level framework, we
trained the Topic Detector and tested its ability to
distinguish utterances drawn from one domain or
the other as follows (see Section 4 for a discussion
on the domains used). We used Latent Dirichlet
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Figure 3: Multi-level processing flow. A single-level system assumes the utterance transcription received from
the ASR is entirely accurate or has a single interpretation (blue lines). The multi-level system acknowledges ASR
output may not be in exact expected form, and uses a classifier to find a close match. If the classifier fails, the topic
is inferred and the language model and other components are switched to a new context (brown lines).

Allocation (Blei et al., 2003) to infer topics in a het-
erogeneous collection of textual data. We used the
Gensim (Řehůřek and Sojka, 2010) implementa-
tion of LDA to train the Topic Detector and extract
the topic distribution from the utterances. We used
the default hyper-parameters and set the number of
topics equal to the number of domains used in the
training and test datasets, i.e., two.

We used the trained LDA model to create the
Topic Detector. It detects a topic shift from
one utterance to another by comparing the Kull-
back–Leibler (KL) divergence between the two
topic distributions (Kullback and Leibler, 1951). If
the difference is above a pre-determined threshold,
a shift is indicated. This is used by the topic detec-
tion component to signal the Selector to switch to
a new language model. As stated previously, this
mechanism can be extended to select among alter-
native parsers, classifiers, knowledge base compo-
nents, etc.

We used k-fold validation with k = 5 to train
and test the Topic Detector’s ability to distinguish
utterances drawn from one domain or the other.
Each fold contains utterances from both domains.
To prepare the folds, we selected utterances from
both domains, and placed them in 5 equally sized
sets. We then trained and evaluated the topic de-
tection model 5 times, selecting a different fold for
evaluation every time and training on the other 4
folds. The training subsets consist of utterances
from both domains.

The testing subset consists of at most 100 ran-
domly paired utterances from the domains. Since

the number of pairs increases exponentially with
the size of the original list, this limit is imposed on
the maximum number of sentence pairs to select. If
a pair of sentences come from different files, then
this is considered ground truth of a topic change,
and vice versa. Sentence pairs are fed to the topic
model, one after the other, and the predicted topic
change is compared against the ground truth topic
change. If the KL divergence of the two sentences
is equal to or exceeds the input KL threshold (0.5),
then this is considered a topic change, and other-
wise not.

4 Framework Demonstration

For model validation, we evaluated its accuracy in
interpreting natural language utterances from dif-
ferent human-robot tasks. The goal was to compare
our multi-level system to one which only used syn-
tactic parsing. Using the data collected in other
human-robot interaction experiments, we obtained
two separate corpora of utterances used to instruct
a robot in a specific task environment. For this im-
plementation, we trained the topic detector on two
topics. In the first domain, SpaceStation, partici-
pants (n = 26) gave commands in natural language
to control several robots repairing components of
a space station (Gervits et al., 2020). Out of 663
utterances, including duplicates, 363 unique utter-
ances remained, out of which 50 were withheld for
the test dataset and 313 were used to train the LDA
model. In the second domain, Diorama, partici-
pants (n = 33) taught new skills to a robot learner
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using natural language (Bennett et al., 2017). Out
of 680 utterances, including duplicates, 525 unique
utterances remained, out of which 50 were withheld
for the test dataset and 475 were used to train the
LDA model. The sentences from the SpaceStation
domain comprised one document and those from
the Diorama domain comprised another. The LDA
model was trained on a union of the two document
collections. We set up a pipeline for incoming utter-
ances wherein each utterance would be processed
in parallel by two different systems: our three-tier
framework which included topic-switching and a
bag-of-words classifier, and a control framework
which possessed only the baseline tier of interpre-
tation through syntactic parsing.

In both the control and multi-tier systems, parser
rules were written by hand based on 100 utterances
from each corpus, which were also used to train the
ASR language models. For the control framework,
these syntactic parsing rules were combined into
one parser dictionary, whereas for the multi-tier
system, the parser swaps between topic-specific
dictionaries at the topic detector’s signal. Similarly,
the control system’s language model was trained
on the combined set of 200 utterances, while the
multi-level system contained two separate models
each trained on 100 utterances from the distinct
tasks. For the multi-level system, two different
classifiers were trained on the two different sets of
utterance training data that had been hand-labeled
with the correct semantic interpretation in predi-
cate 1st-order logic form for each utterance. This
pipeline was fed a test set of 50 utterances from
each corpus (100 utterances total) that were with-
held from the training data. Relevant output such
as utterance transcription, semantic form, and in
the multi-level framework’s case, topic identifica-
tion, were logged and manually annotated by the
experimenter with the ground truth values of these
variables: the correct transcription of each utter-
ance, its intended interpretation in symbolic 1st-
order logic form, and the task (topic) from which it
originated.

4.1 Results

To investigate the differences in accuracy between
the transcriptive and interpretive abilities of the
multi-level and control frameworks, we compared
the output of each framework per utterance to its
respective ground truth value using a Levenshtein
distance (LD) metric, which measures word dele-

(a)

(b)

Figure 4: (a) Mean token-based Levenshtein distance
(LD) between each utterance and its ASR transcription.
(b) LD between the ground truth meaning of an utter-
ance in predicate form and the model interpretation.
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tions, insertions, or substitutions. For transcrip-
tion accuracy, we found the token-based LD be-
tween each utterance and the ASR transcription
of that utterance1. In the multi-level framework,
the mean LD = 1.23, and for the control, the
mean LD = 1.00. We verified that the vari-
ances were homogeneous and then conducted a
paired two-tailed t-test which showed no signifi-
cant difference in transcription accuracy between
frameworks (t(99) = −1.707, p > .05). Similarly,
for interpretation accuracy, we found the LD be-
tween the ground truth meaning of an utterance
in predicate form and the system’s semantic in-
terpretation of that utterance to measure our de-
pendent variable: how close the predicate of the
utterance interpretation was to the ground truth.
For example, the ground truth utterance “pick up
the red box” has a predicate form (semantic mean-
ing) of pickUp(self,box(red)). In cases where the
system was unable to come up with any interpre-
tation, the LD defaulted to 6. In the multi-level
framework, mean LD = 1.57 and for the control,
mean LD = 4.84. We verified that the variances
were homogeneous and then conducted a paired
two-tailed t-test found a significant difference in
these means (t(99) = 12.425, p < .001), demon-
strating that the multi-level framework is signifi-
cantly much more accurate than the control.

The control framework was generally only able
to accurately identify the semantic form of the utter-
ance in cases where the utterance matched exactly
to the grammatical rules specified in the parser. In
addition, it occasionally generated the correct se-
mantic form in cases where it misrecognized an
unexpected utterance as an expected utterance with
the same meaning. For example, the utterance “hey
robot one come fix this tube” was misrecognized
as “fix the tube” by the control framework and thus
correctly parsed with the meaning of repairTube().
In other cases of transcription inaccuracy, the con-
trol framework occasionally recognized portions
of utterances from the wrong task corpus. For ex-
ample, it recognized the utterance “robot one go
to left four” as “robot one go left”, thus interpret-
ing the utterance as move(left). While the diorama
task has a need for this level of directability in the
robot’s movement, the space station does not, and
the action move(left) is used exclusively in the dio-

1This was token-based instead of character-based because
we did not wish to reward misrecognition of a shorter word
over that of a longer word, i.e., “canned” and “can” vs “canned”
and “tanned”

rama task. However, the control framework had
no reason to suppose that this command was less
likely to be uttered in this context, either at the
speech recognition level or at the parsing level. In
all other cases, the control framework was unable
to parse the unexpected utterance, even if the ASR
Component transcribed it completely accurately.
In contrast, the multi-level framework, even if un-
able to get a wholly accurate transcription, was
generally able to come up with a semantic form
which, if not exact, was fairly close to the intended
interpretation, on average only off by one or two
arguments. The topic identifier in the multi-level
framework also correctly identified the topic of the
utterance 93% of the time.

5 Discussion

We hypothesized that the multi-level framework
would perform better in interpreting semantic
meaning of utterances. The results show that there
was a statistically significant difference between
the semantic interpretation accuracy of the multi-
level framework and the control framework, with
semantic interpretation being more accurate in the
multi-level framework (Figure 4b). In addition,
there was no significant difference between the tran-
scription accuracy of the multi-level framework and
the accuracy of the control framework (Figure 4a).
The control framework performed very well on
expected utterances (speech that matched the syn-
tactic structure of utterances from the training set),
but very poorly on unexpected utterances. Its suc-
cess at semantic interpretation was binary: either
100% or 0% certainty. In contrast, the multi-level
framework was able to infer in uncertain situations
due to the classifier, leading to greater overall in-
terpretation success. Although executing a wrong
command could be potentially worse than not un-
derstanding a command at all, having an uncertain
estimate of what the user wants is better than no es-
timate. Rather than executing the command, further
error recovery could begin based on information
from other components. For example, if the agent’s
certainty regarding its interpretation is not above a
certain threshold, its dialogue manager could ini-
tiate a confirmation or clarification request, or its
knowledge database could be solicited for contex-
tual information or dialogue history that might re-
solve uncertainty. This would be a direction to
explore in future work.

We note that even in the control framework, the
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LM was trained on a selective portion of data only
containing the two topics. In contrast, the Aspire
Chain Model default LM is used for general dia-
logue. Thus, there is not a substantial difference in
the ASR word error recognition (WER) between
the two. When run with the default, the control’s
WER is far worse. This will vary depending on
how specific to the task the utterances are. For ex-
ample, utterances like “go to left four” or “drive
forward pushing box c” are transcribed as the ir-
relevant phrases “gonna last for” and “dry forward
pushing box see”, while “what are you doing right
now” and “knock down the yellow tower” are rec-
ognized correctly. The success of the multi-level
framework depends on whether or not the topic is
identified correctly. If the topic is misidentified, all
other output from the system will also be incorrect.
Though a 93% success rate of topic identification
appears good, the success rate might decrease as
more topics are introduced. For this reason, focus
should be placed on how other components of an
autonomous dialogue system can be integrated into
the process of topic identification, so that the bur-
den is not solely placed on ASR. There are several
examples of how this can be handled. For example,
if the parser and classifier both fail to come up with
an interpretation above some threshold of certainty,
they could prompt the topic component to switch
the topic to the second-place choice and attempt
another pass at NLU, or additional information
could be solicited from the system’s knowledge
base about the dialogue history, previous goals,
goal status, or world state that may further assist
with topic identification. The Dialogue Manager
can also initiate clarification requests in case the
above methods fail.

We used only classifier and parser confidence
scores to evaluate interpretation, but other met-
rics might be considered. For example, the ASR’s
word-level transcription confidence could be used
ahead of the interpretation components to signal
an earlier switch to another language model. Chen
et al. (2013) supplemented ASR confidence scores
with additional metrics such as: LM perplexity,
number of competing words, and acoustic model
deviation from true scores. They also used acoustic-
prosodic features for improved confidence in the
ASR-hypothesized word boundary detection. This
might have the greatest benefit for the framework
when given OOD utterances. These utterances are
often broken up into multiple in-domain words and

thus, word insertions are frequent, making up about
40% of word errors.

6 Conclusion

Natural language interaction with SDSs can result
in errors which propagate through the components,
causing interpretation of utterance meaning to fail.
We developed a multi-level framework in which
utterance analysis is escalated according to feed-
back received at the syntactic, semantic, and topic
level. We situated this framework in the context of
prior research in improving speech recognition and
natural language understanding and showed how
they have been integrated with some, but not all,
of the components of our framework. In a demon-
stration in which humans used natural language to
initiate commands controlling robots in two sep-
arate domains, we showed how these approaches
can be integrated with other SDS components. We
found improved accuracy in the SDS’ ability to
interpret spoken task commands. By integrating
multiple different potential routes for understand-
ing into the dialogue system, we allow for better
recovery across the system.
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