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Abstract

We present an annotation scheme that captures
the structure and content of task intentions
in situated dialogue where humans instruct
robots to perform novel action sequences and
sub-sequences. This representation identifies
patterns and structural differences between
human-human and human-robot communica-
tions. We find that humans engage in more
dialogue about updating beliefs with other hu-
mans, while they are significantly more direct
in their intentions with robots, incrementally
instructing physical actions. Additionally, hu-
mans talk significantly less about plans with
robots compared to other humans.

1 Introduction

Robots will inevitably be placed in open-world con-
texts and be expected to accommodate substantial
changes in environment and task ability. More-
over, task-based communications between humans
and robots will likely involve instructing robots
to perform novel actions as it is impractical if not
impossible for robots to have pre-defined knowl-
edge that accommodates all situations. However,
it is currently not clear whether and to what extent
such task-based instructions differ dependent on
whether the instructee is a robot or a human. To
shed light on this question, we examine task-based
instructions given by human instructors to either
human or robotic instructees using a novel annota-
tion scheme that captures the structure and content
of task intentions in situated dialogue. Ultimately,
this scheme will help improve the types of situ-
ated dialogues that robots are capable of handling,
especially in terms of beliefs and plans.

To explore similarities and possible differences
in instruction-giving, we analyze a task-based cor-
pus where the task is for a human instructor to

*Most contributions were performed as a graduate student
at Tufts University.

provide an instructee (human or robot) a series of
instructions that require the movement of objects
situated in the physical world. In advance of the
interaction, the instructor prepares a diorama rep-
resenting a miniature configuration of full-size ob-
jects in the space, and verbally tasks the instructee
to move objects such that they match the diorama.
Instructors participate in two trials, one with an-
other human and one with an anthropomorphic
robot as the instructee. The robot is controlled us-
ing a “Wizard of Oz” methodology, where wizard
experimenters control the robot’s behaviors with-
out the instructor’s awareness. This dataset, the
Diorama corpus (originally collected in Bennett
et al. (2017)) provides an opportunity to investigate
whether human instructors teach robot instructees
differently from human ones.

The annotation scheme we present in this pa-
per aims to capture the content of dialogue moves
in a human-robot interaction task. In doing so,
we seek to better understand how humans will
frame sequences of instructions to robots. Previous
schemes for dialogue acts (e.g., the ISO standard
(Bunt et al., 2017, 2020)) focus on observations in
human-human dialogue and general-purpose dia-
logue structures. In contrast, our scheme is con-
cerned with robot-directed language and describing
dialogue acts in the context of a specific domain,
e.g., performed as part of a conversational game
(Carletta et al., 1996) or performed while updating
an information state (Traum and Larsson, 2003).
While the scheme focuses on the Diorama corpus
task, it also builds on established dialogue move
taxonomy work (Marge et al., 2017).

While the dialogue move taxonomy we present
in this paper can be applied to human-human as
well as human-robot dialogue, we consider our tax-
onomy to be robot-centric because at the highest
level it is organized around the type of responses
that might be expected from a robot. We are partic-
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ularly interested in instructions, defined as instruc-
tor utterances that include one or more dialogue
moves meant to achieve a task-related physical, ver-
bal communicative, or belief update task intention.
A task intention is an instructor goal that the in-
structor wants the instructee to adopt (Cohen and
Levesque, 1990); it can include a plan consisting of
a sequence of one or more actions. Thus we clas-
sify dialogue moves based on the type of response
that the instructor intends the instructee to perform,
given the current context.

We divide the content of dialogue moves into (1)
the dialogue move type, which indicates whether
the move conveys a physical action intention, ver-
bal communicative action intention, or belief up-
date intention, and (2) the dialogue move itself,
which identifies the specific actions or plans that
the instructor intends that the instructee perform in
the environment.

Along with this type and move analysis, instruc-
tions are further assessed in terms of their struc-
ture: whether they include an individual or more
than one instruction, and if there is more than one
instruction, whether or not the instructions are spec-
ified as needing to be in a certain sequence.

Our analysis is performed in this way to
help identify notable differences between human-
directed and robot-directed instructions in the Dio-
rama corpus. Our contributions are the following:

e We introduce a novel dialogue move taxon-
omy that captures the structure and content of
task intentions in situated dialogue.

e We present a comparative analysis of com-
munications involving the instructing of novel
action sequences in human-human and human-
robot dialogues conducted in a physical envi-
ronment, with results that indicate that hu-
mans convey more direct intentions to robots
compared to other humans.

2 Related Work

2.1 Instruction-Giving in Human-Robot
Dialogue

Extensive prior work has explored the core proper-
ties of instruction-giving in human-robot dialogue,
as well as differences in how humans communi-
cate with robots compared to other humans. Much
of this work has focused on the task domain of
navigation (Bugmann et al., 2004; Koulouri and
Lauria, 2009; Marge and Rudnicky, 2011; Marge

et al., 2017), where a desired capability for robots,
especially in teaming with humans, is to move
around the physical world (e.g., to support collabo-
rative exploration, search-and-rescue, or delivery
tasks). In a corpus of route instructions, Bugmann
et al. (2004) found that robot instructees only suc-
ceeded in following the human-provided routes
63% of the time compared with 83% for human
instructees. The difference lay in the ability of
human instructees to detect and correct errors au-
tonomously.

Other work has explored how error-handling
can be achieved through dialogue interaction and
how such strategies differ in human-human versus
human-robot interactions. In a kitchen scenario,
Gieselmann (2006) found that humans largely use
“achievement” strategies for error-handling regard-
less of whether they are talking to a human or a
robot. Examples of such strategies include para-
phrases, repetition, and requesting missing infor-
mation.

Other comparative analyses have identified dif-
ferences in instruction-giving to humans versus
robots. Koulouri and Lauria (2009) examined spa-
tial language in the IBL corpus of route instructions
in a Wizard-of-Oz task. They found that most in-
structions to a robot were in the form of simple
actions, and that there were more of these kinds
of instructions when the human could monitor the
robot’s actions versus when they could not. With-
out monitoring, people used more landmark ref-
erences in their instructions to ensure grounding.
Tenbrink et al. (2010) compared the ways in which
route instructions were generated in human-human
versus human-computer interaction. They found
that human-provided utterances to a human part-
ner were more complex than those provided to a
computer partner. Specifically, this included more
spatial language, more perspective shifting, more
location references, and more complex syntax. On
the other hand, when the partner was a robot, the
instructions tended to be simplified, turn-by-turn
commands. As a whole, these results highlight im-
portant differences in instruction-giving behavior
for navigation tasks, and suggest that humans often
simplify their language when instructing robots.

Other task domains have also been explored,
including language-guided assembly and manip-
ulation. In a dyadic collaborative task, Bennett
et al. (2017) found that human instructors are po-
lite regardless of whether their conversational part-
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ner is a human or robot. In particular, they found
that humans commonly used indirect speech acts
(1SAs) (Searle, 1969) to give instructions, and that
there was no difference in the frequency of ISAs
for human versus robot instructees. In a similar
task, Briggs et al. (2017) also found high rates of
ISAs in human-generated instructions to robots.
The tasks surveyed so far are novel ones without
conventionalized social norms, but Williams et al.
(2018) found that ISAs are increasingly used in
scenarios involving conventional social norms, e.g.,
restaurant ordering. These results suggest that in
non-navigation tasks, people speak to robots much
like they do to humans, highlighting the need for
robots to represent politeness norms and interpret
ISAs in task-oriented dialogue.

2.2 Teacher-Learner Dialogue with Robots

Limited work has explored differences in human-
human versus human-robot communication in tasks
involving the teaching of novel action sequences.
One study by Schreitter and Krenn (2014) inves-
tigated the language of instruction-giving in a
teacher-learner assembly task. They found that
people used a broader vocabulary when instruct-
ing humans compared to robots, suggesting that
teachers may adapt to the perceived capabilities
of a learner. Some work has also explored the
role of a robot teaching a human. For example,
Torrey et al. (2013) found that human and robot
assistants that used more hedges (e.g., “kind of™)
or discourse markers (e.g., “basically”) in a cook-
ing domain were perceived as more likable, more
considerate, and less controlling. Moreover, robots
were perceived as less controlling than humans
even when they used identical discourse markers.
These findings were replicated in Strait et al. (2014)
and shown to be influenced by additional factors in-
cluding robot appearance and interaction distance.

While the literature has explored important dif-
ferences in how humans communicate with robots
compared to other humans, what is missing is
an understanding of the ways in which humans
structure and communicate novel concepts and ac-
tion sequences. This is important for the develop-
ment of mechanisms to enable robots to identify
plans and actions from dialogue interaction (Laird
et al., 2017; Appelgren and Lascarides, 2019). The
present work fills this gap by introducing a scheme
to capture human task intention and using it to anno-
tate a corpus of human-robot dialogue to better un-

Instructor, Instructee,

Human Robot or Human
sees moves and acts in
smaller target diorama larger diorama environment
(foreground) (background)

Figure 1: Instructors manipulate a miniature diorama
(foreground) to a desired configuration, then command
the instructee, who is either human or a robot, to move
objects in the larger diorama environment (background)
to match. During the task, the instructee cannot directly
observe the miniature diorama.

derstand the properties of human instruction-giving
that robots will need to process.

3 Diorama Corpus Overview

The Diorama corpus (Bennett et al., 2017) consists
of dialogues between human instructors and either
a human or robot instructee. Instructors would
teach the human and robot in separate trials a new
“skill” (i.e., how to rearrange a set of objects how-
ever they wanted). As depicted in Figure 1, instruc-
tors reconfigured a miniature version of the room
(i.e., a diorama) from an initial start state, then ver-
bally conveyed a sequence of actions that would
be required to move objects to match. The human
instructee was a confederate experimenter, while
the robot instructee was an anthropomorphic robot.
Instructors (naive participants) told an instructee
situated directly in the environment to perform this
reconfiguration. In the segment of the corpus that
we analyzed, an experimenter informed the instruc-
tor that the robot was fully autonomous. No spe-
cific capabilities of the robot were described. Two
other experimenters used a Wizard-of-Oz interface
to control the robot’s movements and verbal re-
sponses, which were synthesized as speech.

3.1 Diorama Task

In all trials, the environment was divided into two
parts, a teaching area where the instructor (seated)
would have a diorama, and a larger experiment area.
The instructor would reconfigure the diorama of
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miniature objects from an initial start state, then
tell an instructee (human or robot) to replicate their
configuration with the full-sized objects in the ex-
periment area.

Beyond minor restrictions, instructors were free
to rearrange the objects however they desired. The
diorama and experiment area were comprised of
four quadrants with seven movable objects: four
cardboard boxes labeled with letters and three
color-coded towers (in the diorama, towers were
composed of Lego blocks while in the experiment
area they were metal cans). After configuring their
diorama, an instructee would enter the experiment
area and introduce themselves. They would engage
in spoken dialogue so the instructee would move
the objects in the experiment area.

3.2 Interaction Design

Here we briefly outline the interaction design of the
Diorama experiments (for additional details, see
Bennett et al. (2017)). Example dialogues from the
same instructor are presented in Figure 2. During
the trials, both instructees had a limited set of dia-
logue responses. Their responses were constrained
to “Okay”, “Yes”, and “No”, with the exception
of a few clarification questions regarding status;
for example, they could ask “Are there any more
instructions?” to verify the trial was over.

The robot was controlled by an experimenter
with an interface that permitted the robot to pick up
and put down objects with its arms. At the end of
the trial, the instructee would say “Goodbye” and
leave the experiment area. The order in which the
instructor interacted with either the robot or human
was randomized.

3.3 Corpus Statistics

The entire corpus consists of thirty-three partici-
pants (21 female, 12 male; aged 18 to 25, M=20.85,
SD=1.37), but of these, seventeen interacted with
a robot they were told was fully autonomous. The
focus of our analysis was on this subset because
we are interested in the dynamic of perceived robot
autonomy and instruction-giving. Not counting
standard introductory and closure exchanges, par-
ticipants said anywhere between 2 and 27 utter-
ances to the instructee in a trial (M=8.7, SD=4.8).
Overall, each dialogue between the participant and
the instructee ranged from between 6 and 50 task-
related utterances (M=17.1, SD=8.8).

Human Instructee Condition

Instructor:  Um so, I'm going to ask you to move
Box D forward...

Instructor: 1 guess forward once you turn
around, and to the left so that it’s
right on the number 4.

Instructee:  Okay.

Instructee:  Should I do that now?

Instructor:  Yes please.

Instructee:  Okay.

Robot Instructee Condition

Instructor:  Please move Box D backwards and
to the left so that it sits on top of the
number 4.

Instructee:  Okay.

Instructor:  Next, please move Box C backwards
and to the right so that it rests on top
of the number 3.

Instructee:  Okay.

Figure 2: Dialogue excerpts for an Instructor in Human
and Robot Instructee conditions.

4 Corpus Annotation Scheme

We annotated the corpus on three levels: dialogue
move type, dialogue move, and instruction struc-
ture. To calculate inter-annotator agreement, dia-
logues from seven randomly-selected participants
(totaling 299 utterances) were annotated by two
annotators. We report agreement for each level
below.

4.1 Dialogue Move Types

Our taxonomy is meant to apply to human-human
as well as human-robot interactions, but we think
of the taxonomy as being robot-centric because
its dialogue moves are organized into types based
on the nature of response that is expected from a
robot, for the given dialogue move and the given
context. Informally, a robot might be expected to
perform a physical action (such as moving a block),
or to perform a verbal communicative action (such
as describing its capabilities), or to update a belief
without further action (such as understanding a plan
that the instructor is describing).

More formally, we classify the dialogue move
type based on the primary reaction' that the in-
structor intends® the instructee to perform given

"When we say primary reaction, we recognize that, for
example, when the instructee performs a physical or verbal
action, the instructee will typically also update their beliefs
(i.e., that the action has been committed, and that the world
has changed because of it). However, for the purposes of
classification, the primary intention of the instructor is that
the physical or verbal action be performed.

“When we refer to the instructor’s intention, we use the
term in the sense of an action goal that the instructor wants the
instructee to adopt (Cohen and Levesque, 1990): to perform a
physical action, a verbal action, or a belief update action.
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r [move-box move box D into square 1 17
knock-over-tower knock over tower number 2
rotate-box move box B so its facing that way
switch-boxes switch box B with box D
p-action go-to walk over to the yellow tower
turn turn to your left
stop okay, stop
start-plan let’s do that first
other-action yeah, put the yellow ones back up
Lnon-task-related  turn towards me (before we get started)
[check-task-ability see the tallest one over there to your left?
v-action Check-cgpability can you move those cans with your hands?
request-info what do I need to do?
| non-task-related ~ how’s it going? ]
[plan then we’ll do the same for the last box
past-action do the same thing with box A
b-update update-plan we’ll just forget about the towers
acknowledge that’s good
share-info 1 didn’t realize the towers are separate cans
L | non-task-related ~ my name is Alex 1

Figure 3: Taxonomy of Dialogue Move Types and Dialogue Moves, with examples.

atomic move to quadrant 2
. chain
non-atomic
complex

compound  knock down the blue and red towers

return to quadrant 1 and grasp the blue tower object
knock down the blue and red towers, then push

the fallen blocks to quadrant 2

Figure 4: Taxonomy of Instruction Structure Types, with examples.

the current context’. As shown in Figure 3 and as
further described in Section 4.2, the three dialogue
move types we identified are:

e p-actions: physical action intentions

e v-actions: verbal communicative action inten-
tions

e b-updates: belief update intentions

There was substantial inter-annotator agreement
for dialogue act types with 91.5% raw agreement
(Cohen’s unweighted x = .79).

The dialogue move type is not determined by the
full range of possible follow-up actions, responses,
or updates that the instructee may perform; if the
instructor says, “We’ll just forget about the yel-
low tower,” the instructee may legitimately move

3When we say the classification should consider the cur-
rent context, this refers to the common ground (Clark and
Schaefer, 1989), i.e., mutually understood material.

on to another tower (p-action), answer “okay” (v-
action), or just update their beliefs (b-update), but
clearly the utterance should not be classified as all
three types. As defined above, the specific dialogue
move type is defined by the speaker’s intentions for
the hearer, which is determined based on the con-
text. This definition is motivated by our experience
designing interactions for robots, during which one
of the main concerns is determining what is ex-
pected of the robot at any given moment. Although
there are numerous dialogue moves that may vary
based on domain and scenario, we maintain that
there are a far more limited number of types of ex-
pectations that those moves represent: expectations
that the robot perform an action, that the robot say
something, or that the robot do neither of those but
instead just add something to its knowledge base
of beliefs. From those types of expectations, we
identified the three dialogue move types presented
here.
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4.2 Dialogue Moves

We distinguish our dialogue moves from estab-
lished schemes for describing dialogue acts (e.g.,
the ISO standard (Bunt et al., 2017, 2020)) by defin-
ing dialogue moves in the context of a specific do-
main, e.g., performed as part of a conversational
game (Carletta et al., 1996) or performed while
updating an information state (Traum and Larsson,
2003).

To define the range of dialogue moves that we
would study, we began with an existing taxonomy
of robot dialogue moves that had been developed
in a collaborative navigation task (Marge et al.,
2017). We used this as a basis for an initial di-
alogue move annotation of two representative in-
teractions (four dialogues total) to develop the set
of dialogue moves shown in Figure 3, which are
divided into three types as described in Section 4.1.
There was also substantial inter-annotator agree-
ment for dialogue moves, with raw agreement of
81.6% (Cohen’s unweighted k = .77).

One type of dialogue move (p-actions) involves
requests for physical actions such as manipulat-
ing a box in various ways, knocking over towers,
and performing motions. A qualitatively different
move, start-plan, indicates that a mutually under-
stood plan (presumably established through belief
update dialogue moves) should be initiated.

Another type of dialogue move (v-actions) in-
volves requests that the instructee perform a verbal
communicative action. For example, check-task-
ability requests a verbal action that would provide
information about the instructee’s current ability
(e.g., ability to see something, or reach something,
or if there is a path somewhere). In contrast, check-
capability requests a verbal action that would pro-
vide information about the instructee’s general, po-
tential capabilities (e.g., capability of bending over,
or of grasping something in one hand).

The third type of dialogue move (b-updates) in-
volves requests that the instructee update one or
more of their beliefs without further physical or
verbal action. This may involve, for example, ut-
terances in which task-related plans are provided
before the plans are actually enacted, utterances
that update mutual beliefs while a plan is under-
way, and maintaining mutual beliefs. Acknowl-
edgment dialogue moves provide a general expres-
sion of understanding or approval, usually intended
as positive feedback. Plan dialogue moves re-
fer to future or possible actions in more than a

general way; update-plan dialogue moves revise
previously-established plans, and past-action di-
alogue moves involve references to past actions
in any other way — they are unusual in that they
include p-action dialogue moves as a parameter,
although they are not commands for action in them-
selves. B-updates highlight how the primary in-
tended reaction is used to classify the dialogue
move type because in a way, all dialogue moves
involve updating beliefs. However, b-updates do
not have any additional requirement for physical or
verbal action.

All three dialogue move types include a catch-
all dialogue move. For example, if an annotator
encounters a physical action intention that is not
explicitly defined by a dialogue move, that would
be classified as an other-action. An undefined ver-
bal action intention would be a request-info, and
an undefined belief update would be a share-info.

All three dialogue move types also include a
non-task-related move for utterances that are not
part of the Diorama task. For the purpose of this
analysis, we consider preparing for the session and
providing session setup instructions to be different
tasks than performing the Diorama task. As shown
in Figure 3, a p-action:non-task-related dialogue
move might be a request for the instructee to move
towards them before beginning the Diorama task;
only one example of this, “turn towards me,” was
seen in the corpus. Similarly, a v-action:non-task-
related dialogue move might be a general off-topic
question; the example in Figure 3 is notional, as
no examples were seen in the corpus. Finally, a
b-update:non-task-related dialogue move might be
introductions or a farewell expression.

4.3 Instruction Structure

Along with the type and move annotations de-
scribed above, instructions are further assessed in
terms of their structure, as summarized in Fig-
ure 4.

An atomic instruction is an individual low-level
instruction, while non-atomic instructions are made
up of more than one atomic instruction. This is
similar to the distinction between minimal and ex-
tended instructions made in Lukin et al. (2018)
and Traum et al. (2018), but we expand upon the
non-atomic/extended case in the following ways.

A compound non-atomic instruction has no con-
straints on the execution order of the atomic in-
structions that make it up. Consider Figure 4: in
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Instructee

Instructee

Human Robot Human Robot
Move Type Move % N % N Instruction Structure Structure Type %o N % N
p-action** 21 % 31 527% 79 atomic 78% 60 88% 88
move-box 13.6% 20 273 % 41 non-atomic 22 % 17 12 % 12
knock-over-tower 4.1 % 6 12 % 18 chain 9% 7 7 % 7
rotate-box 0% 0 1.3 % 2 compound 13% 10 5% 5
switch-boxes 1.4 % 2 2 % 3 complex 0% 0 0% 0
goto 0% 0 53% 8 Instruction Count 100% 77 100% 100
turn 0% 0 2% 3
stop 0% 0 27% 4
stan_plaﬁ 4% 2 0% 0 Table 2: Counts and percentages of instruction struc-
other-action 4.8% 7 4% 6 ture types out of total number of instructions.
v-action 54 % 8 53 % 8
check-task-ability 2% 3 47% 7
check-task-capability 0 % 0 0% 0
request-info  3.4% 5 <1% 1 (ANOVAs) where instructee type (human or robot)
b-update** 735% 108 42% 63 .
plan® 327% 48 113% 17 and the order (robot first or not) were considered
pastaction 102% 15 53% 8 as fixed effects. Proportions were preferable in the
update-plan 1.4 % 2 1.3 % 2 . ..
acknowledge 95% 14 6% 9 analysis to raw counts because they mitigate the
share-info 224 % 33 193% 29 possible variations in dialogue length per partici-
Utterance Count 100% 147 100% 150

*p <.05; *¥* p < .01

Table 1: Counts and percentages of dialogue move
types and dialogue moves out of total number of in-
structor utterances. Significant differences between In-
structee groups are marked by * p < .05, ** p < .0l.
Note that move type is only counted once per utterance,
while each move may be counted more than once.

the example compound instruction, “knock down
the blue and red towers,” the towers in question can
be knocked down in any order.

By contrast, a chain non-atomic instruction does
have constraints on execution order; in the example
chain instruction, “return to quadrant 1 and grasp
the blue tower object,” the instructee must return to
quadrant 1 before grasping the blue tower object.

Finally, a complex utterance involves both com-
pound and chain instructions. In the example com-
plex instruction, “knock down the blue and red
towers, then push the fallen blocks to quadrant 2,”
the blue and red towers can be knocked down in any
order, but this knocking down must be performed
before the fallen blocks can be pushed to quadrant
2.

We found a high rate of inter-annotator agree-
ment for instruction structure, with a raw agree-
ment of 97.1% (Cohen’s unweighted x = 0.89).

5 Results

The raw counts and percentages of dialogue move
types and dialogue moves out of total instructor
utterances are reported in Table 1. For statisti-
cal testing, we analyzed the proportion of move
types, moves, and instruction structure to instruc-
tor utterances per trial using analyses of variance

pant*. After confirming that there were no main or
interaction order effects’, we performed ANOVAs
on the proportions by instructee type. All non-task-
related moves were excluded from our analysis.

5.1 Dialogue Move Types

When analyzing the proportion of dialogue move
types to the total number of utterances by the in-
structor, several significant differences were found.
A significant main effect for instructee type was
found for both physical action (p-action) and belief
update (b-update) proportions. Instructors used sig-
nificantly more direct physical action intentions in
their dialogues with robots (M=.48, $D=.36) com-
pared to humans (M=.22, SD=.22), F[1,32] = 6.64,
p < .01. In contrast, instructors used signif-
icantly more belief updates in their dialogues
with humans (M=.71, SD=.27) compared to robots
(M=.46, SD=.31), F[1,32] =6.01, p < .01L.

Of the dialogue moves that participants used, the
most meaningful contrast was the use of the plan
move. There were significantly greater proportions
of plans in instructor utterances with the human in-
structee (M=.33, SD=.30) than the robot instructee
(M=.13, §D=.26), F[1,32] =4.40, p < .05. Among
the other moves, the p-action moves move-box and
knock-over-tower were markedly higher, though
not significant, in dialogues with robots over hu-
mans.

5.2 Instruction Structure

We report the raw counts and percentage of in-
struction structure types out of total number of

*A secondary ANOVA-based analysis of raw counts con-
firmed all significant differences found with proportions.
5No significant main effects for order were found.
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instructions in Table 2. No significant main ef-
fects were found for instructee type when com-
paring proportions of atomic instruction structure
to total instructions per trial. The proportion of
atomic instructions was similar for both instruction-
giving to robots (M=.80, SD=.28) and to humans
(M=.72, SD=.35).

6 Discussion

The work presented in this paper aims to identify
similarities and differences in how humans instruct
new action sequences to robots compared to other
humans. Our findings suggest several fundamen-
tal differences both in the intentions for and the
content of instructions.

6.1 Dialogue Move Types and Dialogue
Moves

We found that instructors formulate instructions
with different intentions when the task is to have
an instructee perform actions in the physical world:
they tend to engage in more dialogue about up-
dating beliefs with humans, while more directly
instructing physical actions with robots. We ob-
served significantly higher proportions of belief
update moves in human-human dialogues, while
there were significantly higher proportions of phys-
ical action moves in human-robot dialogues. This
result suggests that the underlying human mental
models of the instructee differ with respect to what
humans (intuitively) believe needs to be addressed:
with humans, instructors know that their instructees
know what to do and how to carry out actions if
their beliefs are aligned with the instructor, whereas
with robots, instructors assume that robots will do
what they tell them to do.

Our results also support the conclusions of other
studies presented in Section 2.1 where humans for-
mulate less complex instructions to robots com-
pared to other humans. This was further supported
by a much higher use of plans in utterances directed
to humans compared to robots. Given the complex
nature of teaching a set of novel actions to a di-
alogue partner, these results suggest that humans
prefer to rely on belief updating all at once when
instructing other humans which is both more suc-
cinct and less burdensome for human instructees
(because human instructees are aware of all the re-
quired actions) than instructing each action directly
and incrementally.

In the case of robots, human instructors do not

typically know whether their instructees are capa-
ble of doing the right thing if given high-level belief
states; in fact, human instructors might not believe
that robots can understand those types of belief ut-
terances or have those types of belief states. This
may be in part due to the fact that instructors were
not given any details on the robot’s capabilities,
forcing them to rely on their own prior notions of
what such a robot could do and possibly inferences
based on their perceptions of the robot.

6.2 Instruction Structure

Looking at how many actions instructors chose to
include in an utterance, we found no significant dif-
ference in the proportion of atomic to non-atomic
instructions to either the human or robot instructee.
In general, there was an overall heavy use of atomic
instructions (at least 70% for both conditions). We
believe this is in part due to the shared gaze per-
mitted by the study setup: while they were in the
same space, without any limitations on how many
instructions they could give, the principle of least
collaborative effort (Clark and Schaefer, 1989) sug-
gests the least costly way of doing the task is to
teach one chunk of the larger task at a time. We
suspect that if the instructor and instructee were
in separate spaces, or if there were limitations im-
posed on how many instructions they could give
to the instructee, there could be substantial differ-
ences.

6.3 Limitations

A complication we identified while performing the
annotations was that we received only the utterance-
speaker pairs of the corpus, without information
about timing, prosody, or visually co-occurrent ac-
tions. In the few cases where the instruction-giver
appeared to repeat themselves, timing information
would have confirmed whether this was actually a
self-correction or a re-issuing of an instruction that
was not acknowledged by the instructee. Addition-
ally, a few utterances (e.g., “Like this?”) referred to
a gesture that the instructee was performing. While
it was clear a physical action was underway, identi-
fying the intention could be made clearer with ac-
cess to visual recordings. We recommend in future
studies that investigate such dialogue phenomena
that visual and timing information be collected in
addition to the spoken dialogue.

We also note that some of the differences in
instruction-giving to human and robot instructees
are because humans generally perceive robots dif-
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ferently from other humans (Bartneck et al., 2020).
This fundamentally implies that there will be differ-
ences in the instructions given to robots; our results
confirm this general concept.

7 Conclusions

In this paper, we presented a novel annotation
scheme that enables comparisons between how hu-
mans instruct either a human or a robot instructee to
perform previously unknown actions. The scheme
centers on capturing the structure and content of
task intentions in situated dialogue. We annotated
a corpus of instruction-giving dialogues (Diorama
corpus), and found substantial differences in how
humans instruct robots compared to other humans.
Humans tend to use dialogue to update beliefs of
their instructees, as also indicated by a marked
increase in the use of plans. In contrast, human in-
structors were more direct with robots, instructing
physical actions in the space.

The results highlight the need to better under-
stand people’s implicit mental models of robots
and what effects these mental models have on how
humans formulate instructions for robots. This is
particularly critical for the design of natural lan-
guage understanding systems as well as cognitive
architectures for future, more sophisticated robots.
Such robots will likely be confronted with more
humanlike instructions, and so will need to un-
derstand high-level beliefs and translate them into
executable actions, which requires an understand-
ing of the links between high-level goals, purposes,
and how to realize them — all capabilities that cur-
rent robotic systems lack. Future work should then
explore how human instructors relate to perceived
or known robot capabilities, and what level of so-
phisticated instructions robots would then be able
to handle based on the changes to human mental
models of robots.

Acknowledgments

This research was sponsored by the Basic Research
Office of the U.S. Department of Defense with a
Laboratory University Collaboration Initiative Fel-
lowship awarded to the first and third authors and
by a NASA Space Technology Research Fellow-
ship (NSTRF) awarded to the second author. The
authors would like to thank the anonymous review-
ers for their helpful comments.

References

Mattias Appelgren and Alex Lascarides. 2019. Coher-
ence, symbol grounding and interactive task learn-
ing. In Proc. of SemDial.

Christoph Bartneck, Tony Belpaeme, Friederike Eyssel,
Takayuki Kanda, Merel Keijsers, and Selma
Sabanovié¢. 2020. Human-Robot Interaction: An In-
troduction. Cambridge University Press.

Maxwell Bennett, Tom Williams, Daria Thames, and
Matthias Scheutz. 2017. Differences in interac-
tion patterns and perception for teleoperated and au-
tonomous humanoid robots. In Proc. of IROS.

Gordon Briggs, Tom Williams, and Matthias Scheutz.
2017. Enabling robots to understand indirect speech
acts in task-based interactions. Journal of Human-
Robot Interaction, 6(1):64-94.

Guido Bugmann, Ewan Klein, Stanislao Lauria, and
Theocharis Kyriacou. 2004. Corpus-based robotics:
A route instruction example. In Proc. of Intelligent
Autonomous Systems.

Harry Bunt, Volha Petukhova, Emer Gilmartin, Cather-
ine Pelachaud, Alex Fang, Simon Keizer, and Lau-
rent Prévot. 2020. The ISO standard for dialogue
act annotation, second edition. In Proc. of LREC.

Harry Bunt, Volha Petukhova, David Traum, and Jan
Alexandersson. 2017. Dialogue act annotation with
the ISO 24617-2 standard. In Multimodal interac-
tion with W3C Standards. Springer.

Jean Carletta, Amy Isard, Jacqueline Kowtko, Gwnyeth
Doherty-Sneddon, and Anne Anderson. 1996.
HCRC Dialogue Structure Coding Manual. Human
Communication Research Centre.

Herbert H. Clark and Edward F. Schaefer. 1989. Con-
tributing to discourse. Cognitive science, 13(2):259—
294.

Philip R. Cohen and Hector J. Levesque. 1990. Inten-
tion is choice with commitment. Artificial intelli-
gence, 42(2-3):213-261.

Petra Gieselmann. 2006. Comparing error-handling
strategies in human-human and human-robot dia-
logues. In Proc. of KONVENS.

Theodora Koulouri and Stanislao Lauria. 2009. A
corpus-based analysis of route instructions in
human-robot interaction. In Proc. of Towards Au-
tonomous Robotic Systems (TAROS).

John E. Laird, Kevin Gluck, John Anderson, Ken-
neth D. Forbus, Odest Chadwicke Jenkins, Christian
Lebiere, Dario Salvucci, Matthias Scheutz, Andrea
Thomaz, Greg Trafton, Robert E. Wray, Shiwali Mo-
han, and James R. Kirk. 2017. Interactive task learn-
ing. IEEE Intelligent Systems, 32(4):6-21.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.



Stephanie Lukin, Kimberly Pollard, Claire Bonial,
Matthew Marge, Cassidy Henry, Ron Artstein,
David Traum, and Clare Voss. 2018. Consequences
and factors of stylistic differences in human-robot
dialogue. In Proc. of SIGdial.

Matthew Marge, Claire Bonial, Ashley Foots, Cory
Hayes, Cassidy Henry, Kimberly Pollard, Ron Art-
stein, Clare Voss, and David Traum. 2017. Ex-
ploring variation of natural human commands to a
robot in a collaborative navigation task. In Proc.
of the First Workshop on Language Grounding for
Robotics.

Matthew Marge and Alexander Rudnicky. 2011. The
TeamTalk corpus: Route instructions in open spaces.
In Proc. of the RSS Workshop on Grounding Human-
Robot Dialog for Spatial Tasks.

Stephanie Schreitter and Brigitte Krenn. 2014. Ex-
ploring inter- and intra-speaker variability in multi-
modal task descriptions. In Proc. of RO-MAN.

John R. Searle. 1969. Speech acts: An essay in the phi-
losophy of language. Cambridge University Press.

Megan Strait, Cody Canning, and Matthias Scheutz.
2014. Let me tell you! Investigating the effects
of robot communication strategies in advice-giving
situations based on robot appearance, interaction
modality and distance. In Proc. of HRI.

Thora Tenbrink, Robert J Ross, Kavita E Thomas, Nina
Dethlefs, and Elena Andonova. 2010. Route in-
structions in map-based human—-human and human-
computer dialogue: A comparative analysis. Jour-
nal of Visual Languages & Computing, 21(5):292—
309.

Cristen Torrey, Susan R Fussell, and Sara Kiesler. 2013.
How a robot should give advice. In Proc. of HRI.

David Traum, Cassidy Henry, Stephanie Lukin, Ron
Artstein, Felix Gervits, Kimberly Pollard, Claire Bo-
nial, Su Lei, Clare Voss, Matthew Marge, Cory J.
Hayes, and Susan G. Hill. 2018. Dialogue structure
annotation for multi-floor interaction. In Proc. of
LREC.

David Traum and Staffan Larsson. 2003. The informa-
tion state approach to dialogue management. In Cur-

rent and new directions in discourse and dialogue,
pages 325-353.

Tom Williams, Daria Thames, Julia Novakoff, and
Matthias Scheutz. 2018. “Thank you for sharing that
interesting fact!” Effects of capability and context
on indirect speech act use in task-based human-robot
dialogue. In Proc. of HRI.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.



