LDM: A Linear Dialogue Manager

Vladislav Maraev*, Jean-Philippe Bernardy* and Jonathan Ginzburg’
*Centre for Linguistic Theory and Studies in Probability (CLASP),
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg
{vliadislav.maraev, jean—-philippe.bernardy}@gqu.se
fLaboratoire Linguistique Formelle (UMR 7110), Université de Paris
yonatan.ginzburg@univ-paris—-diderot. fr

Abstract

For this system demonstration, we presents a
modular dialog manager comprised of the fol-
lowing components. At the lowest level, we
have implemented a proof-search engine based
on linear logic. This engine features unifica-
tion. In this engine we have implemented a
suite of generic dialog-management rules, in-
spired from Ginzburg’s KoS framework, such
that firing a rule correspond to an information-
state update of the agent. These generic rules
can then be complemented by domain-specific
rules. We show in particular how a question-
answering agent, such as one operating an in-
formation kiosk, can be implemented.

1 Introduction

A key aspect of dialogue systems is the coherence
of the system’s responses. In this respect, a key
component of a dialogue system is the dialogue
manager, which selects appropriate system actions
depending on the current state and the external
context.

Two families of approaches to dialogue man-
agement can be considered: hand-crafted dialogue
strategies (Allen et al., 1995; Larsson, 2002; Joki-
nen, 2009) and statistical modelling of dialogue
(Rieser and Lemon, 2011; Young et al., 2010;
Williams et al., 2017). Frameworks for hand-
crafted strategies range from finite-state machines
and form-filling to more complex dialogue plan-
ning and logical inference systems, such as Infor-
mation State Update (ISU) (Larsson, 2002) that we
employ here. Although there has been a lot of de-
velopment in dialogue systems in recent years, only
a few approaches reflect advancements in dialogue
theory. Our aim is to closely integrate dialogue
systems with work in theoretical semantics and
pragmatics of dialogue.

We believe that it is crucial to use formal tools
which are most appropriate for the task: one should

be able to express the rules of various genres of
dialogue in a concise way, free, to any possible
extent, of irrelevant technical details. In the view of
Dixon et al. (2009) this is best done by representing
the information-state of the agents as updatable
sets of propositions. Subsets of propositions in the
information state can be treated independently, and,
therefore, a suitable and flexible way to represent
updates is as propositions in linear logic.

By using well-known techniques which corre-
spond well with the intuition of information-state
based dialogue management, we are able to pro-
vide a fully working prototype of the components
of our framework:

1. a proof-search engine based on linear logic,
modified to support inputs from external sys-
tems (representing inputs and outputs of the
agent)

2. a set of rules which function as a core frame-
work for dialogue management (in the style
of KoS (Ginzburg, 2012))

3. several examples which use the above to con-
struct potential applications of the system.

2 Linear logic as a Dialogue
Management Framework

Typically, and in particular in the archetypal logic
programming language prolog (Bratko, 2001), ax-
ioms and rules are expressed within the general
framework of first order logic. However, several
authors (Dixon et al., 2009; Martens, 2015) have
proposed to use linear logic (Girard, 1995) instead.
For our purpose, the crucial feature of linear logic
is that hypotheses may be used only once.

In general, the linear arrow corresponds to de-
structive state updates. Thus, the hypotheses avail-
able for proof search correspond to the state of the

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

system. In our application they will correspond to
the information state of the dialogue participant.

This way, firing a linear rule corresponds to trig-
gering an action of an agent, and a complete proof
corresponds to a scenario, i.e. a sequence of ac-
tions, possibly involving action from several agents.
However, the information state (typically in the lit-
erature and in this paper as well), corresponds to
the state of a single agent. Thus, a scenario is con-
ceived as a sequence of actions and updates of the
information state of a single agent a, even though
such actions can be attributed to any other dialogue
participant b. (That is, they are a’s representation
of actions of b.) Scenarios can be realised as a
sequence of actual actions and updates. That is,
an action can result in sending a message to the
outside world (in the form of speech, movement,
etc.). Conversely, events happening in the outside
world can result in updates of the information state
(through a model of the perceptory subsystem).

In our implementation, we treat the information
state as a multiset of linear hypotheses that can be
queried. Because they are linear, these hypotheses
can also be removed from the state. In particular,
we have a fixed set of rules (they remain available
even after being used). Each such rule manipu-
lates a part of the information state (captured by its
premisses) and leaves everything else in the state
alone.

Our DM models the information-state of only
one participant. Regardless, this participant can
record its own beliefs about the state of other par-
ticipants.In general, the core of DM is comprised
of a set of linear-logic rules which depend on the
domain of application. However, many rules will
be domain-independent (such as generic processing
of answers). We show these generic rules here, and
the demo will illustrate them within an example
application.

Integrating moves from NLU and NLG:

hearAndRemember :
(m:DP — DP — Move) —
(z y: DP) — (ms: List Move) —
Heard (m x y) —o
Moves ms —o HasTurn x —o
[_:: Moves (Cons (m x y) ms);
_:: Pending (m z y);
_ = HasTurn yl;
utterAndRemember :
(m:DP — DP — Move) —
(ms : List Move) — (z y: DP) —

Agenda (m z y) — Moves ms —o
HasTurn © —o

[_:: Utter (m z y);

_:: Moves (Cons (m x y) ms);
_:: HasTurn y;

pushQUD :
(q: Question) — (qs : List Question) —
(z y: DP) — Pending (Ask q x y) —o
QUD qs — QUD (Cons q qs)

Basic adjacency:

counterGreeting :
(z y: DP) — HasTurn x —
Pending (Greet y x) —o
Agenda (CounterGreet = y);

Processing user replies:

processAssert :
(a: Type) — (z:a) — (p: Prop) —
(gs : List Question) — (dp dpl : DP) —
Pending (Assert p dp1 dp) —o
QUD (Cons (Question dp a x p) qs) —o
[_:: UserFact p; _:: QUD gs];
processShort :
(a: Type) — (z:a) — (p: Prop) —
(gs : List Question) — (dp dpl : DP) —
Pending (ShortAnswer a x dpl dp) —o
QUD (Cons (Question dp a = p) gs) —o
[_:: UserFact p; _:: QUD gs];

Answering or clarifying:

produceAnswer :
(a: Type) — (z:a) — (p: Prop) —
(gs : List Question) —
QUD (Cons (Question U a = p) gs) —o
p —
[_:: Agenda (ShortAnswer a x S U);
_=QUD gs;
_t Answered (Question U a z p)];

produceCR :

[a: Type;z: a;p: Prop;
gs : List Question;
_ = QUD (Cons (Question U a x p) ¢s);
_up] =2 CR;

References

James F Allen, Lenhart K Schubert, George Ferguson,
Peter Heeman, Chung Hee Hwang, Tsuneaki Kato,

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

Marc Light, Nathaniel Martin, Bradford Miller, Mas-
simo Poesio, et al. 1995. The TRAINS project:
A case study in building a conversational planning
agent. Journal of Experimental & Theoretical Artifi-
cial Intelligence, 7(1):7-48.

Ivan Bratko. 2001. Prolog programming for artificial
intelligence. Pearson education.

Lucas Dixon, Alan Smaill, and Tracy Tsang. 2009.
Plans, actions and dialogues using linear logic. Jour-
nal of Logic, Language and Information, 18(2):251—
289.

Jonathan Ginzburg. 2012. The interactive stance. Ox-
ford University Press.

J.-Y. Girard. 1995. Linear Logic: its syntax and seman-
tics, London Mathematical Society Lecture Note Se-
ries, page 1-42. Cambridge University Press.

Kristiina Jokinen. 2009. Constructive dialogue mod-
elling: Speech interaction and rational agents, vol-
ume 10. John Wiley & Sons.

Staffan Larsson. 2002. Issue-based dialogue manage-
ment. Ph.D. thesis, University of Gothenburg.

Chris Martens. 2015. Programming Interactive Worlds
with Linear Logic. Ph.D. thesis, Carnegie Mellon
University Pittsburgh, PA.

Verena Rieser and Oliver Lemon. 2011. Reinforce-
ment learning for adaptive dialogue systems: a data-
driven methodology for dialogue management and
natural language generation. Springer Science &
Business Media.

Jason D Williams, Kavosh Asadi, and Geoffrey
Zweig. 2017. Hybrid code networks: practical
and efficient end-to-end dialog control with super-
vised and reinforcement learning. arXiv preprint
arXiv:1702.03274.

Steve Young, Milica Gasi¢, Simon Keizer, Francois
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model:
A practical framework for POMDP-based spoken
dialogue management. Computer Speech & Lan-
guage, 24(2):150-174.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

https://doi.org/10.1017/CBO9780511629150.002
https://doi.org/10.1017/CBO9780511629150.002

