Proactive Systems and Influenceable Users: Simulating Proactivity in
Task-oriented Dialogues

Vevake Balaraman'?

, Bernardo Magnini!

'Fondazione Bruno Kessler, Trento, Italy
2ICT Doctoral School, University of Trento, Italy
{balaraman, magnini}@fbk.eu

Abstract

We investigate proactivity, the capacity of a di-
alogue system to provide relevant information
even when not explicitly requested, in the con-
text of task-oriented dialogues. We propose
to extend the current task-oriented framework,
and have investigated four aspects of proactiv-
ity: (i) the degree of proactivity provided by
the system during a dialogue; (ii) the propen-
sity of the user to be influenced by the sys-
tem proactivity; (iii) the complexity of the do-
main ontology; (iv) the relation between user
needs and application domain, in terms of ex-
pected failure situations. Under the hypothesis
that proactivity helps to increase effectiveness
and efficiency of dialogues, we set up a frame-
work based on dialogue simulations, and ex-
perimented the four aspects mentioned above.
Although the current implementation allows
to simulate a limited amount of dialogue phe-
nomena (e.g., system initiative only), we are
able to show that proactivity might have strong
effects on dialogues, reducing up to 60% of
dialogue turns in an application domain of
medium complexity.

1 Introduction

Proactivity is a fundamental characteristic of
human-human collaborative dialogues, consisting
in the attitude of the speakers to provide informa-
tion that can be used to achieve the goal of the
dialogue, even when such information is not ex-
plicitly requested. This attitude obeys to the so
called principles of cooperative dialogue, which
have been summarized in the popular Grices’s max-
ims (Grice, 1975). Among the others, proactivity is
very common in instruction-giving dialogues. For
instance, assuming the following dialogue between
speakers A and B,

(A) What time is the next train to London?
(B) The next train is at 1015. It arrives at 1245.

we say that It arrives at 1245 is a proactive re-
sponse, because information given by B is more
than was asked for by A, and because B guesses
that this is the sort of information A might also
need, and so offers it unsolicited. The major effect
of proactivity is that, by anticipating user needs
(e.g., a question like What time this train will ar-
rive in London? in our example), it avoids long
dialogues, making communication more efficient.

Proactive behaviours share some aspects with
other communicative devices. Persuasion (Fogg,
2002; Wang et al., 2019) provides not requested in-
formation too, although not necessarily in response
to a user request (i.e., we can try to persuade even
without a dialogue). Recommendation (Chen et al.,
2019), has assumed an application connotation, i.e.,
suggesting items that match the user profile during
a search process. We prefer to use proactivity as
a general term to indicate any situation in a task-
oriented dialogue where the system takes the initia-
tive to provide a piece of non requested information
with the goal of better achieving the user needs.

Finally, proactivity goes beyond verbal com-
munication, and may involve multimodal modali-
ties. A well known experience has been Microsoft
Clippy, launched as an helper for the Microsoft op-
erative system. The substantial difficulties encoun-
tered by Clippy to be well accepted by users, mostly
because of its perceived invasiveness, should be
considered as a signal that effective proactivity is
actually a very complex phenomenon.

Although very common in human-human dia-
logues, proactivity is almost absent from the cur-
rent research in task-oriented dialogue systems. To
the best of our knowledge, proactivity is largely un-
der represented in most of the datasets (e.g., ATIS
(Price, 1990), WoZ (Mrksi¢ et al., 2017), MultiWoz
(Budzianowski et al., 2018), Snips (Coucke et al.,
2018)) that are used to train either natural language
understanding or dialogue state tracker components

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

Non-proactive Proactive

Dialog Dialog

User: Are there any Eritrean restaurants in town? User: Are there any eritrean restaurants in town?

Sys: No, there are no Eritrean restaurants in town. Would you Sys: No, there are no eritrean restaurants in town. Most of the
like a different restaurant? restaurants are Chinese, particularly in the East area of the

town

User: How about Chinese food? User: Chinese food in the East area is fine.

Sys: There is a wide variety of Chinese restaurants. Do you | Sys: Yu Garden is a Chinese restaurant in the east area, with
have an area preference or a price preference to narrow mid level price.

it down?
User: | would like the East part of town.
Sys: Yu Garden is a Chinese restaurant in the east area.

User: Could | get the address, phone number, and postcode | User: Could | get the address, phone number, and postcode

of Yu Garden? of Yu Garden?

Sys: Phone is 01223 248882, address and postcode are 529 | Sys: Phone is 01223 248882, address and postcode are 529
Newmarket Road Fen Ditton C.B 5, 8 P.A Newmarket Road Fen Ditton C.B 5, 8 P.A

User: Thank you. That is all the information | needed. User: Thank you. That is all the information | needed.
Bye bye! Bye bye!

Figure 1: On the left side: a non proactive sample dialog from the WoZ dataset. On the right side: a proactive
version of the same dialogue (arranged by us). Turns are separated by dotted-lines; proactive contributions of the
system are in italic.

of conversational agents. A more detailed analysis ~ will not be proposed to the user anymore. In both
on proactivity in existing task-oriented datasets is of the cases, we see that a proactive behaviour has
presented in Section 3). brought the system to a more precise definition of

Figure 1, left side, shows a typical task-oriented the user needs (i.e., the belief state of the system).

dialogue from the WoZ dataset (Wen et al., 2017), In. the paper we aim at'a first step toward ex-
collected through Wizard of Oz and focused on tending the current task-oriented framework to ac-

booking restaurants. Here we notice the behaviour commoda@ proactive behavu?urs. We 1nvefst1gate
of the system in case of a failure situation (i.e., no the foll.owmg research questions: ('1)'wh'1ch are
match with the user needs), at turn 1: No, there the main features that affect proactivity in task-
are no Eritrean restaurants in town. Would you oriented dialogues? and (ii) can we model such fea-
like a different restaurant?, and compare it with a tures within the architecture of current dialogues
. . " . ? i
proactive version of the same dialogue, arranged ~ SYStems? and (iii) how can we show the impact
by us, showed in Figure 1, right side. In this proac- of proactivity on task-oriented dialogues, e.g., in
tive version the systems responds: No, there are no ~ e'ms of effectiveness and efficiency of the dia-
Eritrean restaurants in town. Most of the restau- logues?. The code used for the simulation is made

rants are Chinese, particularly in the East area of publicly available.'

the toyv;a'., offerir}g to the user potentially useful 2 Related Work

domain information to reorient the search. At the

next turn the user may accept or not the proactive In this section we report works that are related to
contribution of the system. In case the user accepts ~ proactive dialogues in both task-oriented and open
it (as in Figure 1, right side), there is no need of ~ domain (i.e., chit-chat) dialogue systems.

a further question about food type and the area of
the restaurant, and the system can directly move
to propose a specific restaurant, saving one turnin ~ Task-oriented dialogues, usually distinguished
the dialogue. In case the user does not accept the ~ from so called chit-chat dialogues, cover a broad
proactive contribution, the dialogue will follow the ~ range of applications (Allen et al., 2001; Bohus
non-proactive path, and the system can implicitly ~ and Rudnicky, 2009), including giving instructions,
assume a low match with the user needs for the mgithub _com/vevake/Proactive.
facts involved in the proactive contributions, which dialog_simulation

2.1 Proactivity in Task-oriented Dialogues

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

https://github.com/vevake/Proactive_dialog_simulation
https://github.com/vevake/Proactive_dialog_simulation

question answering, executing commands, conver-
sational search, recommendation dialogues, and
also explanatory dialogues. In this paper we fo-
cus on task-oriented dialog systems whose aim
is to help the uses to retrieve items (i.e., entities)
in a certain domain of interest, through conversa-
tional search (Radlinski and Craswell, 2017). Such
systems (Young et al., 2013; Bordes et al., 2017;
Lei et al., 2018; Wen et al., 2017) are modelled to
achieve the task by actively questioning the user
for slot values in a knowledge base, and then to re-
trieve entity instances satisfying the user needs. We
report some work on recommendation, dialogue ini-
tiative, and persuasion, which we believe is related
to proactivity.

Recommendation dialogues. (Thompson et al.,
2004) propose ADAPTIVE PLACE ADVISOR, an
adaptive conversational recommendation system
designed to help people to select an item from a
Knowledge Base. (Sun and Zhang, 2018) propose
a conversational recommender system based on
user’s past ratings and the current interactions to
make personalized recommendations to the user.
The cold-start problem for recommendations in
task-oriented dialogue systems was investigated by
(Christakopoulou et al., 2016), proposing a prefer-
ence elicitation framework to learn the preferences
of a new user in fewer interactions and then use
preferences to make recommendations. (Yoshino
and Kawahara, 2015) propose a news navigation
system that proactively presents users with infor-
mation by tracking on the user focus.

Mixed initiative dialogues. Collaboration is par-
ticularly investigated in the context of mixed initia-
tive dialogues, with the general goal of modelling
dialogue policies for several situations (e.g., ne-
gotiation and argumentation dialogues). (Guinn,
1996) examined how to incorporate the initiative
in a task-oriented dialogue system and proposed
attaching a initiative level to each goal and as the
goal of the dialogue changes, so does the dialogue
initiative. (Yang and Heeman, 2007) investigated
human-human conversations, proposing that initia-
tive normally belongs to the speaker who initiates
the task. They support the claim though simula-
tions with two variations of mixed-initiative strat-
egy. (Nouri and Traum, 2014) addressed mixed-
initiative dialogue patterns in a negotiation dataset
and the relationship between such patterns and the
goal/outcome of the dialogue. They propose an

annotation schema for dialogue initiative that allow
to identify key features in a negotiation dialogues.

Persuasive dialogues. Unlike recommendation
and dialogue initiative, where system and user co-
operate to achieve a common goal, persuasive dia-
logues aims at convincing the user to achieve the
systems goal (e.g., buying a target item or donating
for charity). (Hiraoka et al., 2014) analyse human
persuasion and the relation with user satisfaction.
They propose an annotation scheme for persuasive
dialogues and analyze a set of dialog acts by col-
lecting a human-human dialog dataset for camera
sales, showing that the main dialogue acts are in-
formation exchange and argumentation. (Hiraoka
et al., 2013) propose a dialogue manager based on
Bayesian network framework. They construct a
knowledge-base that captures the relationship be-
tween various topics, which is then used to guide
the user from topic to topic. (Wang et al., 2019)
work on identifying correct persuasion strategies
and analyse which strategies were effective based
on user backgrounds.

While recommendation, user initiative and per-
suasion address collaborative phenomena in dia-
logue, they also tend to influence the user toward a
specific target goal/item. Although the border be-
tween recommendation and proactivity is fuzzy, we
intend proactivity as a general collaborative strat-
egy aiming at improving the conversation quality
and effectiveness, particularly in case of failure
situations.

2.2 Proactivity in Open-Domain Dialogue
Systems

Proactivity is also addressed for open domain dia-
logue systems due to high user expectations in open
domain conversations. (Li et al., 2016) propose
STALEMATEBREAKER, a system that can proac-
tively introduce new content during a conversation,
when a stalemate situation (e.g., “...” or “Errr”, etc.)
in the conversation is detected. The new content
is dependent on the context of the conversation
and is retrieved from a knowledge graph. (Yan
and Zhao, 2018) address proactivity combining the
response generation and a suggestion generation,
and proposing a hybrid approach that provides a
smart response (in addition to the system response),
which the user can use as the input for the next turn.
While this approach is feasible for open domain
systems, for task-oriented dialogue systems such
as smart responses, this is inefficient because of

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

the nature of the task. (Wu et al., 2019) propose
a view on proactivity where the system is actively
leading the conversation to achieve a specific goal.
This requires the system to generate plans over a
knowledge graph.

3 Proactivity in Existing Task-oriented
Datasets

Modeling proactivity for task-oriented dialogues
requires the system be aware of the content of do-
main and be able to provide responses that help the
user to better achieve his/her goals. In general, a
proactive system should be guided by two strate-
gies: (i) try to avoid failure situations, providing
the user with domain information before the point
of failure; (ii) in case a failure is reached, use proac-
tivity to recover the dialogue. In this Section we
are interested to analyse whether the two strate-
gies mentioned above are represented in current
available datasets.

Existing datasets for task-oriented dialogue sys-
tems are widely collected using a Wizard-of-Oz
(WoZ) approach. According to the WoZ method-
ology dialogues are collected following a script
that is provided both to the user, who believes to
interact with a system, and to the wizard, a person
who simulates the behavior of a system. Typically,
the wizard extracts information to be provided to
the user searching in a domain Knowledge Base
(e.g., restaurants in a town). However, since the
dialogue follows a pre-defined script with a de-
scription of the actions that the wizard can take, if
proactive behaviours are not included in the script,
the responses of the Wizard will be quite standard,
resulting in a general lack of proactivity. To support
this intuition, we analyse two of the most widely
used multiturn datasets for task-oriented dialogue
systems, namely WoZ (Wen et al., 2017; Mrksi¢
et al., 2017) and MultiWoZ (Budzianowski et al.,
2018), searching for system proactivity. In both the
datasets proactivity is not marked in any way (i.e.,
there is no a specific dialogue act for it). In order to
analyse proactivity we focused on failure situations,
where there is no match between the constraints
posed by the user and the content of the system
domain (see example reported in Figure 1). These
situations are both easy to be individuated in the di-
alogue corpus through simple patterns (e.g., There
are no...), and, according to our expectations, are
those where the Wizard should be mostly proactive
to help the user. As a consequence, we assume that

restricting our search to those situations can give a
good approximation of proactivity in the corpus.

In the WoZ dataset we found over 200 fail-
ure situations, i.e., turns where the system was
not able to find any matching with respect to the
user constraints. In all such turns, except four of
them, the response of the Wizard was a non proac-
tive behaviour of the type “There are no <SLOT-
VALUE> restaurants in town. Would you like a dif-
ferent restaurant?”” where <SLOT-VALUE>> cor-
responds to a combination of slot values requested
by the user (e.g., Eritrean, as in our example in
Figure 1). We can conclude that proactivity was
not a relevant design criteria for the WoZ dataset.

As for the MultiWoZ dataset, we have individu-
ated nearly 3000 turns where the user constraints
do not yield any matching result. Out of them, we
noticed around 10% of turns providing a proactive
response to the user, such as “There are no hotels
that fit your criteria in the <AREA>, but there are
two Guesthouses. Would you like to book one of
those?”. Such responses in MultiWoZ were explic-
itly mentioned in the dialog task description of the
Wizard, with the goal of modeling more realistic
conversations (Budzianowski et al., 2018). We con-
clude that in MultiWoZ proactivity, at least in case
of search failure, has been considered by design.
However, we think that: (i) the amount of proactiv-
ity is still under represented, and (ii) maybe more
important, being not annotated in any way, there is
virtually no difference between proactive and non
proactive behaviours.

4 Modeling Proactivity

In this section first we introduce the relevant back-
ground about modeling task-oriented dialogues,
and then we attempt to extend such framework
to integrate proactivity.

4.1 Task-oriented Dialogue Framework

According to most of the recent literature
(Budzianowski et al., 2018; Bordes et al., 2017;
Mrksi¢ et al., 2017), we assume a task-oriented
dialogue between a system and an user, composed
of a sequence of turns {t1,t2, ...t }. The goal of
the dialogue is to retrieve a set of entities (pos-
sible empty) in a domain knowledge base (K B),
which satisfy the user needs. A domain ontology
O provides a schema for the K B, and typically
represents entities (e.g., RESTAURANT, HOTEL,
MOVIE) according to a pre-defined set of slots S

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

(e.g., FOOD, AREA, PRICE, for the RESTAURANT
domain), and values that a certain slot can assume
(e.g., EXPENSIVE, MODERATE and CHEAP, for
the slot PRICE). On the base of the entities defined
in the domain ontology, the application knowledge
base, K B, is then populated with instances of such
entities. As in most of the literature, we distinguish
informable slots, which the user can use to con-
straint the search (e.g., AREA), and requestable
slots (e.g., PHONENUMBER), whose values can be
asked only when a certain entity has been retrieved.
We say that the entity space of a domain ontology
O is the combinatorial product of the slot values
defined for each informable slot in O.

S|
Entity Spaceo,(E) = H [Vl
i=1

where |V;| is the number of possible values for
an informable slot S; in a given domain ontology
Og. At each turn in the dialogue, both the user and
the system may refer to facts in the KB, the user
with the goal of retrieving entities matching his/her
needs, and the system to pro-actively propose enti-
ties that can help the user to achieve the dialogue
goals.

Finally, in such task-oriented systems a dia-
logue state tracker (DST) maintains a distribution
over the dialogue states based on the dialogue his-
tory. A dialogue state d; for a turn ¢; is typically
represented as a set of slot-value pairs, such as
{PRICE=MODERATE, FOOD=ITALIAN}, meaning
that at ¢; the system assumes that the user is looking
for an Italian restaurant with a moderate price.

4.2 Proactive Units

We define a proactive behaviour as any information
that: (i) is introduced by the system; (ii) was not
previously introduced in the dialogue by the user;
and (iii) it is assumed to be relevant to achieve the
user needs. We call a piece of proactive content
proactive unit. Intuitively, a proactive unit pu; rela-
tive to a certain dialogue state d; is a sort of guess
of the user need given the information available at
turn ¢;. For instance, assuming
d;= {AREA=CENTER}, then both:
{AREA=CENTER, FOOD=ITALIAN} and
{AREA=CENTER, FOOD=ITALIAN,
PRICE=MODERATE }

are possible proactive units for d;.

Although in principle there might be different
ways to identify a proactive unit during a dialogue,

in this paper we focus on proactive units generated
through completion of the dialogue state. Given a
dialogue state d; = {s1 = v1,...S, = v, }, a com-
pletion for d; is defined as an extension of d; with
slot-value pairs defined in the Ontology O, with the
constraint that only one slot-value pair for each slot
is admitted. Notice that, according to the task-
oriented framework we adopted (Budzianowski
et al., 2018), a dialogue state can only contain in-
formable slots (see Section 4.1) and we apply the
same constraint to its completions. This means that
proactive units only contain informable slots, and
that suggestions containing requestable slots (e.g.,
“Bella Napoli offers a large variety of pizzas”) are
not allowed. This is the way we capture the dis-
tinction between proactivity and recommendation
mentioned in the Section 1.

Depending on the complexity of the domain on-
tology (i.e., number of slots and slot values), the
number of proactive-units generated through com-
pletion for a dialogue state may be high, and it
becomes useful the capacity to rank the units ac-
cording to their relevancy, so that the more relevant
are selected as proactive suggestions to the user. As
a first approximation to a relevance function, we
consider the probability that the entities described
in the proactive units are actually present in the
domain K B. Intuitively, the more the chances that
a proactive unit have occurrences in the K B, the
easier for the dialogue system will be to accom-
plish the user goals. To compute the probability
of a proactive unit we consider the fraction of K B
entities that matches the slot-value pairs out of the
K B entities that match the dialogue state. More
precisely:

#matches(pu;)
(puildi) #matches(d;)

where the number of matches corresponds to the
number of entities (i.e., instances) in the K B that
satisfy all the slot-value pairs in pu; or d;.

For instance, if the user asks for Italian restau-
rants (d;={FOOD=ITALIAN}), the following could
be a partial rank of the proactive units that com-
plete the information in the dialogue state:

([FOOD=ITALIAN], [AREA=CENTRE], p = 0.8)
([FOOD=ITALIAN], [AREA=SOUTH], p = 0.2)

assumed that 80% of the ITALIAN restaurants in the
K B are in CENTRE, while 20% are in the SOUTH).
According to this ranking, the first proactive unit

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

will have more chances to be selected in that dia-
logue turn.

Notice that the definition of completion provided
above is constrained by the slots defined in the do-
main ontology, and does not consider other possible
features, such as those related to the user identity
(e.g., gender, age), nor situational features (e.g.,
time of the day).

4.3 System Proactivity

Having now clear our definition of proactive units,
a first aspect that needs to be modelled is the at-
titude of the system to inject such proactive units
during the dialogue. Based on the fact that proac-
tive units are “completions” of a dialogue state, we
consider those turns in the dialogue involved in the
search through informable slots, and exclude turns
where the choice is already made and the user asks
additional information on requestable slots (e.g.,
telephone number of the selected restaurant).

Intuitively, at each (search) turn the system has
to take two decisions: first, whether to be proactive
or not, and, second, in case the system decides to
be proactive, the amount of proactive units to be
displayed to the user. We regulate the two decisions
using two parameters. a is a value in the range [0,1]
that defines the apriori attitude of the system to be
proactive. It is interpreted as the proportion of
turns in the dialogue that show proactivity. For
instance, ¢ = 0.5 means that 50% of the turns in
the dialogue are expected to be proactive. A second
parameter is k, indicating the average number of
proactive units to be used by the system at each
proactive turn. k ranges from 1 (i.e., an average
of one proactive unit) to |F|, the cardinality of
the entity space (see Section 4.1) defined over the
domain ontology O. In practice, k is typically very
small, as high numbers of proactive units will not
be cognitively accepted by users.

The model we propose defines a and k as av-
erage behaviours of the system, and it is agnostic
about how the average is actually achieved. How-
ever, in most situations it seem reasonable that
both @ and k distribute, respectively their proactive
turns and proactive units, quite uniformly through
the dialogue, avoiding dialogues where, e.g., all
proactive turns are at the end, or all the proactive
units are used in a single turn. In our experiments
(Section 6) we adopt a similar strategy.

4.4 User Influenceability

A second aspect that needs to be considered while
modeling proactive dialogues is the propensity of
the user to accept the system suggestions. Intu-
itively, in order to produce the expected benefit, the
user has to somehow “accept” the proactive content
provided by the system. Remind that we defined
proactivity as a neutral behaviour, i.e., general in-
formation about the domain of the task (e.g., “Most
Italian restaurants are in the city center”), rather
than specific recommendations (e.g., “Bella Napoli
offers a large variety of pizzas”). While acceptance
may depend on several reasons (e.g., quality of the
proactive content), we approximate the propensity
of the user to accept a proactive information, i.e.,
user influenceability, with a probability value [0, 1],
where 0 corresponds to a user that never accepts
the system information (i.e., a non influenceable
user), and 1 to a user that always accepts proac-
tive content (i.e., a very influenceable user). For
instance, a user influenceability set to 0.5 means
that 50% of the proactive content provided by the
system will be “accepted” by the user, while the
remaining 50% will be ignored.

4.5 Complexity of the Application Domain

A third aspect that may affect proactivity is the
complexity of the application domain. The intu-
ition is that solving a conversational search task
(e.g., retrieving a restaurant) in a complex domain
might require more interactions than solving the
same task in a less complex domain. According
to this intuition, the more the domain complexity,
the more proactivity is necessary to help the user to
make efficient dialogues. We define domain com-
plexity considering the number of entities defined
in the domain ontology, their slots and their slot
values. Practically, domain complexity is approx-
imated with the domain entity space, defined in
Section 4.1, and calculated as the combinatorial
product of the slot value sets, for each slot of the
domain.

4.6 Failure Situations

The last aspect that we aim to capture is that proac-
tivity is particularly useful to recover failure sit-
uations, when the user needs do not match with
any actual content of the domain K B, and some
form of “adjustment” of the initial needs is typi-
cally attempted in order to successfully conclude
the dialogue. This is the situation shown in Figure

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

1, where initially the user is looking for an Eritrean
restaurant, and, after being informed that there are
no such restaurants (i.e., a failure), he/she makes
use of the system information and modifies the ini-
tial goals. Intuitively, the more failure situations
happen in a dialogue, the more the role of system
proactivity, and the more the expected benefits in
term of task accomplishment.

We denote the probability of a failure situation as
failure expectation and estimate it, given a certain
application K B, considering the prior probability
that a certain user need (e.g., a restaurant with cer-
tain characteristics) actually occurs in the domain
K B, and average such probability over all the po-
tential user needs (i.e., the entity space defined over
the domain ontology O).

1 Y (1ifEin KB
RS
|E| “— |Oelse

Failure

expectation

where F is the entity space. The more the failure
expectation (e.g., “we do not have such restaurant™),
the higher the need to help the user with proactivity.
We practically estimate the probability of a user
need to occur in the K B with the number of entity
instances in the KB: the more the instances, the
more the probability that the user need can be found
in the KB.

Note that the size of the KB and the domain
complexity described in section 4.5 are indepen-
dent: a domain can be very complex (i.e., many
slots and many slot values) although very poorly
populated (i.e., few instances), and vice versa.

S Simulating Proactivity

As there are no available datasets that can be used
to test our model of proactive dialogues, we base
our investigation on dialogues generated through
simulation. We used an existing multi-domain dia-
log generator, SimDial? (Zhao and Eskenazi, 2018),
and extended it by incorporating both the system
proactive behaviour and user influenceability, as
defined in Section 4. SimDial is based on a set
of domain specifications describing the ontology
of the dialogue task and a set of complexity spec-
ification that describe dialogue policies. As for
domain we focus on restaurant booking defining its
possible slots and values, while for dialogue poli-
cies we used the default specifications provided by
SimDial.

“https://github.com/snakeztc/SimDial

5.1 Domain KB and Proactive Units

Our dialogue simulator is based on a default do-
main ontology for restaurants, consisting of three
informable slots (i.e., AREA, PRICE, FOOD) with,
respectively, 12, 10, and 3 pre-defined values, and
two requestable slots (i.e., PARKING, OPEN). We
also populated a default KB with 200 instances,
randomly using the set of pre-defined slots.

Then, we extracted all the proactive units (see
Section 4.2) from the default Ontology, considering
both single and combinations of multiple slot-value
and pairs, and then we computed their probability
distribution in the K B. Such proactive units are
stored in a repository called KB-stats, and made
available as possible proactive information that the
system can choose to convey to the user. The KB-
stats is re-computed for each different configura-
tion of the K B of our experiments.

5.2 Proactivity Module

The proactivity module that we incorporate to Sim-
Dial has access to KB-stats, which contains infor-
mation about proactive units for the domain, as
defined in Section 5.1. In order to keep the effi-
ciency of the simulator under control, the content
of the KB-stats is pre-computed. Specifically, we
pre-compute the complete set of proactive units
(see Section 4.2) considering the slots and the slot
values in the ontology, as well as the probability
of each proactive units on the base of the entities
of the populated K B. We use the KB-stats to effi-
ciently generate the pro-active-units for a certain
dialogue state. The query to the KB-stats is the cur-
rent dialog-state and the result is the list of proac-
tive units that “complete” the dialogue state with
their probability, according to relevancy definition
provided in Section 4.2. For example, if the current
dialog state is FOOD=ITALIAN, the proactive infor-
mation could be (FOOD=ITALIAN, AREA=WEST,
0.8), which informs the system that 80% of the
Italian restaurants are in the west.

5.3 Dialog Agent

The SimDial dialog-agent has a default policy
which consists to request the user-agent for all the
informable slots and, after that, to perform a do-
main query to retrieve entities from the KB. The
order in which the informable slots are requested
to the user-agent is randomized. This is the non
proactive policy of SimDial.

The dialog-agent with the proactive policy re-

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

quests the informable slot to the user-agent, as in
the default policy, and, in addition, provides the
proactive information (i.e., the proactive units) that
may help the user to achieve his goal. To convey the
proactive information, we have defined proactive
templates, which are used to transform the abstract
information of the proactive units into a natural
language utterance.

In particular, we define two kinds of templates
that show proactive information: i) the first tem-
plate indicates that all the proactive units for the
current dialogue state lie in a single search space
(e.g., All Italian restaurants are in Palo Alto and are
expensive); ii) the second template indicates that
most of the proactive units for the current dialogue
state lie in a single search space (e.g., Most Italian
restaurants are in Palo Alto). For example as seen
in Figure 2, the system at turn 7 requests the user-
agent for the PRICE slot and then provides proactive
information that all restaurants are cheap. The se-
lection of the template is carried on based on the
proactive information retrieved from the KB-stats.
If the selected proactive unit for the current dialog
state has probability 1.0, then the first template is
chosen otherwise second template is preferred.

We also added an additional policy to the dialog
agent: if, for a particular dialog state, there is no
proactive information retrieved, then it implies that
there are no entities in the KB matching the dia-
logue state. In this case, instead of the dialog-agent
continuing to query the user-agent for additional
slots, we directly inform the user-agent to change
his goal, as there exists no result for the current
goal.

5.4 User agent

The default SimDial user-agent responds to the
slot requested by the dialog-agent with a slot value
based on his current goal. When the dialog-agent
returns a restaurant match for the user-agent’s goal,
the user-agent may ask for any additional informa-
tion on the available requestable slots (i.e., PARK-
ING and OPEN).

In case of a proactive dialogue agent, the user-
agent receives an additional proactive information
at each turn, and has the option to either accept
or ignore this suggestion. We simulate this user
behaviour through the user influenceability proba-
bility value, as defined in Section 4.4.

An interesting situation happens when the se-
lected proactive unit contains multiple slots (e.g.,

Most [talian restaurants are in Palo Alto and are
expensive). In this case we designed a policy that al-
lows the user-agent both to accept the entire proac-
tive unit, or just a part of it. This policy, partial
acceptance, in the current version is not explicit
as a dialogue act, rather it is implemented by the
user-agent repeating the slot value suggested by
the dialog-agent. The reason for that is due to the
limitations of the natural language expressions that
can be handled by the simulator.

Finally, the maximum number of turns in a di-
alogue is set to 100 and, if the user-agent can not
achieve its goal in 100 turns, the user-agent decides
to quit the dialogue.

5.5 Evaluating Proactive Dialogues

The working hypothesis of this paper is that proac-
tive behaviors help to improve both the effective-
ness of the dialogue, i.e., the capacity of the user to
accomplish his goals, and the dialogue efficiency,
i.e., accomplishing the task with shorter dialogues.
In our simulation framework we say that a task
has been accomplished when a match with the user
needs is found within a certain number of turns
(fixed to 100), and we measure efficiency with the
number of turns of the dialogue.

5.6 Limits of the Current Simulator

The current implementation of the proactive sim-
ulator has a number of limitations, which affect
our capacity to carry on simulations. The most
relevant is that SimDial allows for system initia-
tive dialogues only. Secondly, it is not trivial to
integrate a proactive response within the simulator
dialog policy. As an example, it happens that while
the proactive response for the current dialog state
shows that there is no match in the KB, the system
would still continue to ask for further informable
slot values from user before it makes the KB query.

An example of a simulated proactive dialogue is
shown in Figure 2. Although with the above limita-
tions, the current simulator allowed to run a number
of experiments, reported in the next Section.

6 Experiments and Results

In this section we describe the dialogue configura-
tions that we have simulated, we report the obtained
results, and finally we discuss our achievements.

6.1 Experimental Setting

We simulated task-oriented proactive dialogues for
restaurant booking. The default configuration is

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

Sys: Welcome to restaurant recommendation system.
How can | help?

User: Hi. | need a restaurant.

Sys: What type of restaurant?. Most of the restaurants are
Korean

User: Chinese food.

Sys: Which city are you interested in?. Most of the Chinese
restaurants are in Austin and are cheap.

User: At San Jose.
Sys: What's the average price? All Chinese restaurants in
San Jose are in cheap pricerange.

User: cheap price.
Sys: Restaurant 62 is a good choice. Are you happy about
my answer?

User: No more questions. Thank you.
Sys: See you next time..

Figure 2: A simulated dialog using the simulator for
the restaurant domain.

as described in Section 5.1. In addition, we simu-
lated four levels of domain complexity (see Section
3.5) varying the number of slot values for the three
slots of the ontology. As for the size of the K B,
we simulated six configurations (including the de-
fault), ranging from 50 to 1000 instances. For each
configuration the set of proactive units included in
the KB-stats has been fully recalculated.

As for system proactivity, we set the average
amount of proactive units per turn k to 1 and vary
the system proactive attitude a in the range [0, 1].
User influenceability has been simulated consider-
ing ten values in the probability range [0, 1] with
increments of 0.1.

The estimation of a failure expectation, see Sec-
tion 4.6, given that the simulated KB has been pop-
ulated randomly, the failure expectation has been
simply calculated considering the KB size for a
fixed ontology: the bigger the KB the less failure
expectations are expected.

Dialogue effectiveness is calculated on the num-
ber of turns of the dialogue. A simulated dialogue
stops either when a restaurant is found, or when
a maximum of 100 turns is reached. Finally, for
each experimented configuration, we simulate 1000
dialogues.

6.2 Results of the Simulations

The goal of the simulation is to highlight the depen-
dencies between the proactivity aspects described
in Section 4. We are interested to test how dia-
logue effectiveness changes as a function of system

80

N - 0.0
\ =04
02
- 03
04
05
06
07
08
09

Number of Turns
P @D

o o

g

n
=]

00 03 05 08 10
User Influenceability

Figure 3: Dialogue effectiveness w.r.t the system proac-
tivity attitude and the user influenceability. Numbers in
legend indicate the system proactivity rate.

proactive attitude, user influenceability, domain
complexity and failure expectations.

Dialogue effectiveness as a function of user in-
fluenceability and proactivity attitude. In this
experiment we keep constant the ontology and the
KB (using the default configurations), and we vary
user influenceability and system proactivity atti-
tude. Figure 3 shows for each proactivity attitude
against the user influenceability values in the range
[0,1]. We notice that dialogue effectiveness in-
creases (i.e number of turns decreases) with the
increase of both proactive attitude and user influ-
enceability. As expected, it can be noticed that a
highly influenceable user (probability 1) results in
the least number of turns in the conversation. While
such highly influenceable users are quite unrealis-
tic, and maybe undesired behaviour, we can infer
that a moderately influenceable user (probability
0.5), would nevertheless result in a considerable
reduction of unwanted interactions, a situation that
helps the user to achieve the dialogue goals more
effectively.

Dialogue effectiveness as a function of failure
expectation and user influenceability. In this
experiment we keep constant the ontology (using
the default configuration) and the proactivity atti-
tude (set to 1), and we vary the size of the KB
and the user influenceability. Figure 4 shows the
effectiveness of the proactive attitude over differ-
ent failure expectation values (i.e., KB size). We
can infer that, in case of a small KB, a user would
struggle to find the desired results (i.e., 24 dialogue
turns on average), as there is high probability that
his/her constraints do not match with the KB in-
stances. However, we notice that the number of
turns considerably decreases even if the user con-

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

=50 =100 - 200 - 500 - 800 - 1000

) (¥)
r 5 =3

Number of turns
= S

\

3 05
User influenceability

|

Qh
o

08

Figure 4: Dialogue effectiveness w.r.t the complexity
of domain KB and the user influenceability. Values in
the legend indicate the number of instances populated
in the KB.

-5, 5,5] -[12,10,3] - [30,15,5] - [60, 30, 10]

@
=1

33
=}

Number of turns
w P
o (=]

]
o

00 0.3 05 08 1.0
User influenceability

Figure 5: Dialogue effectiveness w.r.t the complexity
of domain ontology and the user influenceability. Num-
bers in legend indicate the number of values for each of
the three informable slots.

siders only half of the system proactive responses
(i.e., users influenceability of 0.5). This is promis-
ing particularly for domains with a very small KB,
although with a range of possible user constraints.

Dialogue effectiveness as a function of domain
complexity and user influenceability. In this
experiment we keep constant the KB size (using the
default configuration of the KB with 200 instances)
and the proactivity attitude (set to 1.0), and we vary
the ontology complexity (varying the number of
values for each slot), and the user influenceability.

We recall that for certain domains the number of
values for a given slot could be unbounded (e.g.,
time of departure) and it could be exhausting for a
user to find the KB result that matches his/her con-
straints without having any feedback or proactive
behaviour from the system. Figure 5 shows that
increasing the domain complexity, the number of
turns necessary to achieve a goal increases, and this
number can be drastically reduced by following a
proactive behaviour.

Both proactive attitude and the user influence-
ability have the same effect on the dialogue effec-
tiveness: the first generates proactive units, while
the second filters them out, both with a certain
probability. For this reason we do not present the
corresponding experiments.

6.3 Discussion

In this section we discuss the two research ques-
tions at the core of the paper, in the light of the
simulations that we carried on.

Which are the features that affect a proactive
behaviour in task-oriented dialogues? The as-
pects proposed in Section 4 proactive unit, system
proactivity rate, user influenceability and complex-
ity of the application domain are all relevant for
describing proactive dialogues. Particularly, the no-
tion of proactive unit has been shown to be essential
to make operative our simulation of proactivity.

How can we model such features within the ar-
chitecture of current dialogue systems? While
the current modeling of task-oriented dialogues
provides a general framework, specific extensions
were necessary to model our intuitions about the at-
titude of the user (i.e., influenceability) and the role
of the system (i.e., proactivity). However, simulat-
ing proactivity revealed itself as more complex than
initially expected, and, due to the issues described
in Section 5.6, we had to adopt quite simplistic
solutions.

How can we show the impact of proactivity on
task-oriented dialogues, in terms of effective-
ness and efficiency of the dialogues? Although
we are aware that an effective evaluation should
involve human judgements, the simulations that
we conducted allow to show that the proactivity
attitude of the system and the user influenceability
have similar effect on the dialogue, and that they
act as multipliers of the dialogue effectiveness. On
the other side, failure expectation and domain com-
plexity capture orthogonal properties of proactivity.
Through our simulations we obtained quantitative
evidences that small KBs and complex ontologies
are the main motivations behind the need of proac-
tivity. This conclusion, together with our predictive
data, may have relevant impact on the practical
construction of proactive dialogue systems.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

7 Conclusion

We propose to extend the current task-oriented
framework to manage proactive behaviours of the
system. We analysed four aspects: (i) the degree
of proactivity provided by the system during a di-
alogue; (ii) the propensity of the user to be influ-
enced by the system proactivity; (iii) the complex-
ity of the application domain, and (iv) the failure
expectation of a dialogue goal. We conducted a
series of simulation experiments, which allowed to
investigate our intuitions about the role of the four
proactivity aspects with respect to the effectiveness
of the dialogue.

As for future work, we are currently working
along three directions. First we intend to further ex-
tend SimDial, to be able to simulate more complex
proactive situations: particularly mixed initiative
dialogues and more complex domain ontologies.
Second, we will conduct a comparison of the sim-
ulated dialogues based on human judgements, in
order to have a qualitative evaluation. The third
research direction is about modeling proactive di-
alogue policies, to be used within current neural
dialogue architectures.

References

James F. Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. In Proceedings of the 6th Interna-
tional Conference on Intelligent User Interfaces, IUI
2001, Santa Fe, NM, USA, January 14-17, 2001,
pages 1-8. ACM.

Dan Bohus and Alexander I. Rudnicky. 2009. The
ravenclaw dialog management framework: Archi-

tecture and systems. Comput. Speech Lang.,
23(3):332-361.

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2017. Learning end-to-end goal-oriented dialog. In
ICLR. OpenReview.net.

Pawel Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Ifiigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gasi¢. 2018. MultiwOZ - a
large-scale multi-domain wizard-of-Oz dataset for
task-oriented dialogue modelling. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 5016-5026, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Qibin Chen, Junyang Lin, Yichang Zhang, Ming Ding,
Yukuo Cen, Hongxia Yang, and Jie Tang. 2019. To-
wards knowledge-based recommender dialog sys-
tem. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1803—-1813, Hong Kong, China. Association for
Computational Linguistics.

Konstantina Christakopoulou, Filip Radlinski, and
Katja Hofmann. 2016. Towards conversational rec-
ommender systems. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page
815-824, New York, NY, USA. Association for
Computing Machinery.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calta-
girone, Thibaut Lavril, et al. 2018. Snips voice plat-
form: an embedded spoken language understanding
system for private-by-design voice interfaces. arXiv
preprint arXiv:1805.10190, pages 12—16.

BJ Fogg. 2002. Persuasive technology: using com-
puters to change what we think and do. Ubiquity,
2002(December):5.

Herbert P Grice. 1975. Logic and conversation. In
Speech acts, pages 41-58. Brill.

Curry I. Guinn. 1996. Mechanisms for mixed-initiative
human-computer collaborative discourse. In 34th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 278-285, Santa Cruz, Cal-
ifornia, USA. Association for Computational Lin-
guistics.

T. Hiraoka, Y. Yamauchi, G. Neubig, S. Sakti, T. Toda,
and S. Nakamura. 2013. Dialogue management for
leading the conversation in persuasive dialogue sys-
tems. In 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, pages 114—-119.

Takuya Hiraoka, Graham Neubig, Sakriani Sakti,
Tomoki Toda, and Satoshi Nakamura. 2014. Con-
struction and analysis of a persuasive dialogue cor-
pus. In 5th International Workshop on Spoken Dia-
log Systems (IWSDS), Napa, California, USA.

Wengiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL 2018, Mel-
bourne, Australia, July 15-20, 2018, Volume 1: Long
Papers, pages 1437-1447.

Xiang Li, Lili Mou, Rui Yan, and Ming Zhang. 2016.
Stalematebreaker: A proactive content-introducing
approach to automatic human-computer conversa-
tion. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, 1J-
CAI 2016, New York, NY, USA, 9-15 July 2016,
pages 2845-2851. IICAI/AAALI Press.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

https://doi.org/10.1145/359784.359822
https://doi.org/10.1145/359784.359822
http://dblp.uni-trier.de/db/journals/csl/csl23.html#BohusR09
http://dblp.uni-trier.de/db/journals/csl/csl23.html#BohusR09
http://dblp.uni-trier.de/db/journals/csl/csl23.html#BohusR09
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.18653/v1/D19-1189
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.1145/2939672.2939746
https://doi.org/10.3115/981863.981900
https://doi.org/10.3115/981863.981900
http://www.phontron.com/paper/hiraoka14iwsds.pdf
http://www.phontron.com/paper/hiraoka14iwsds.pdf
http://www.phontron.com/paper/hiraoka14iwsds.pdf
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
http://www.ijcai.org/Abstract/16/404
http://www.ijcai.org/Abstract/16/404
http://www.ijcai.org/Abstract/16/404

Nikola Mrkgi¢, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017. Neu-
ral belief tracker: Data-driven dialogue state track-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1777-1788. Associa-
tion for Computational Linguistics.

Elnaz Nouri and David Traum. 2014. Initiative taking
in negotiation. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL), pages 186—193, Philadel-
phia, PA, U.S.A. Association for Computational Lin-
guistics.

P. J. Price. 1990. Evaluation of spoken language sys-
tems: the ATIS domain. In Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Hidden
Valley, Pennsylvania, June 24-27,1990.

Filip Radlinski and Nick Craswell. 2017. A theoretical
framework for conversational search. In Proceed-
ings of the 2017 Conference on Conference Human
Information Interaction and Retrieval, CHIIR 2017,
Oslo, Norway, March 7-11, 2017, pages 117-126.
ACM.

Yueming Sun and Yi Zhang. 2018. Conversational rec-
ommender system. In The 41st International ACM
SIGIR Conference on Research Development in In-
formation Retrieval, SIGIR *18, page 235-244, New
York, NY, USA. Association for Computing Machin-
ery.

Cynthia A. Thompson, Mehmet H. Goker, and Pat
Langley. 2004. A personalized system for con-
versational recommendations. J. Artif. Int. Res.,
21(1):393-428.

Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh,
Sijia Yang, Jingwen Zhang, and Zhou Yu. 2019. Per-
suasion for good: Towards a personalized persuasive
dialogue system for social good. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5635-5649, Florence,
Ttaly. Association for Computational Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M. Rojas Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
438-449. Association for Computational Linguis-
tics.

Wenquan Wu, Zhen Guo, Xiangyang Zhou, Hua Wu,
Xiyuan Zhang, Rongzhong Lian, and Haifeng Wang.
2019. Proactive human-machine conversation with
explicit conversation goal. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3794-3804, Florence,
Italy. Association for Computational Linguistics.

Rui Yan and Dongyan Zhao. 2018. Smarter response
with proactive suggestion: A new generative neural
conversation paradigm. In Proceedings of the 27th
International Joint Conference on Artificial Intelli-
gence, IICAT’ 18, page 4525-4531. AAAI Press.

Fan Yang and Peter A Heeman. 2007. Exploring initia-
tive strategies using computer simulation. In Eighth
Annual Conference of the International Speech Com-
munication Association.

Koichiro Yoshino and Tatsuya Kawahara. 2015. News
Navigation System Based on Proactive Dialogue
Strategy, pages 15-25. Springer International Pub-
lishing, Cham.

S. Young, M. Gasié¢, B. Thomson, and J. D. Williams.
2013. Pomdp-based statistical spoken dialog sys-
tems: A review. Proceedings of the IEEE,
101(5):1160-1179.

Tiancheng Zhao and Maxine Eskenazi. 2018. Zero-
shot dialog generation with cross-domain latent ac-
tions. In Proceedings of the 19th Annual SIG-
dial Meeting on Discourse and Dialogue, pages 1—
10, Melbourne, Australia. Association for Computa-
tional Linguistics.

Proceedings of the 24th Workshop on the Semantics and Pragmatics of Dialogue, July 18-19, 2020,
Online, hosted from Massachusetts, USA.

https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.3115/v1/W14-4325
https://doi.org/10.3115/v1/W14-4325
https://www.aclweb.org/anthology/H90-1020
https://www.aclweb.org/anthology/H90-1020
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3020165.3020183
https://doi.org/10.1145/3209978.3210002
https://doi.org/10.1145/3209978.3210002
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
http://aclweb.org/anthology/E17-1042
http://aclweb.org/anthology/E17-1042
http://aclweb.org/anthology/E17-1042
https://doi.org/10.18653/v1/P19-1369
https://doi.org/10.18653/v1/P19-1369
https://doi.org/10.1007/978-3-319-19291-8_2
https://doi.org/10.1007/978-3-319-19291-8_2
https://doi.org/10.1007/978-3-319-19291-8_2
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.1109/JPROC.2012.2225812
https://doi.org/10.18653/v1/W18-5001
https://doi.org/10.18653/v1/W18-5001
https://doi.org/10.18653/v1/W18-5001

