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Abstract

We compare two models for corpus-based se-
lection of dialogue responses: one based on
cross-language relevance and a cross-language
LSTM model. Each model is tested on multi-
ple corpora, collected from two different types
of dialogue source material. Results show
that while the LSTM model performs ade-
quately on a very large corpus (millions of
utterances), its performance is dominated by
the cross-language relevance model for a more
moderate-sized corpus (ten thousands of utter-
ances).

1 Introduction

End-to-end neural network models of conversa-
tional dialogue have become increasingly popular
for conversational tasks (e.g., (Ritter et al., 2011;
Serban et al., 2015; Zhao et al., 2017)). These
models eschew traditional modeling approaches
that include internal hand-crafted domain models
and representations of dialogue context and mul-
timodal input signals, and separate components
for understanding natural language (converting
to the internal representation language), updating
dialogue state, state-based response generation,
and natural language generation (e.g., (Traum and
Larsson, 2003; Raux et al., 2005; Nasihati Gilani
et al., 2018)). Instead, these models learn to re-
spond directly from a corpus, either by generat-
ing new responses or selecting a response from the
corpus training data, using dual encoding and hid-
den layers to learn appropriate dialogue continua-
tions. However, there are still a number of ques-
tions remaining about how well such models really
work for real applications, and how much data is
needed to achieve acceptable performance. Other
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machine learning approaches have been shown to
be useful, with much smaller datasets.

In this paper, we compare two different kinds of
end-to-end system, a neural network model based
on (Lowe et al., 2015) and an older kind of end-
to-end dialogue model, based on cross-language
retrieval (Leuski et al., 2006), implemented in the
publicly available NPCEditor (Leuski and Traum,
2011), and previously used for systems that have
been displayed in museums (Traum et al., 2012,
2015). We compare these models on two different
datasets: the Ubuntu Corpus (Lowe et al., 2015),
and one derived from one of the museum system
datasets (Traum et al., 2015).

2 Datasets and models

We utilized a number of datasets in our exper-
iments to compare NPCEditor with a deep neu-
ral network model. The Ubuntu Dialogue corpus
(Lowe et al., 2015) was constructed from Linux
support message boards, where people posted
problems and solutions. It contains 1 million
multi-turn dialogues, with a total of over 7 mil-
lion utterances and 100 million words. The train-
ing set has 50% relevant and 50% irrelevant pairs
of < context, response >. In the development set,
for a given context it has 1 relevant response and 9
distractors (irrelevant responses).

We constructed three other datasets out of the
data made available from the system described
in (Traum et al., 2015). Pinchas 10 consists of
33350 samples for the training set, 50% of which
are negative samples and the rest are positive. In
the development and test sets, for each question,
there is a relevant response and 9 randomly se-
lected non-relevant responses. (Similar to the dev
and test sets in the Ubuntu corpus)

Pinchas 1444 is constructed to investigate how
the models would perform on a task inspired by a
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real problem (Traum et al., 2015) in which we
may have more than one thousand possible re-
sponses gathered from interviews. The training
set is created similar to Pinchas 10. Nonethe-
less, for the development and test sets, instead of
10 distractors, we used the whole set of possi-
ble responses. Another important difference be-
tween Pinchas 1444 and Pinchas 10 is that in this
new set there might be more than one relevant
response for a given question. Given that very
few of the 1444 responses are appropriate for any
given question, showing an even number of posi-
tive and negative examples might inappropriately
prefer recall over precision. In a second version,
Pinchas 1444 v2, we increased the negative sam-
ples in the training set from 50% to 90%.

The first model we test is NPCEditor (Leuski
and Traum, 2011), which was used for the system
in (Traum et al., 2015). At the core of NPCEditor
is a statistical regression approach based on cross-
lingual language model proposed by Lavrenko
for cross-lingual information retrieval (Lavrenko,
2004). Leuski and Traum successfully adopted his
approach to question answering and applied it in
many different applications (Leuski and Traum,
2008, 2011).

From the pool of previous deep neural net mod-
els, such as (Hochreiter and Schmidhuber, 1997),
(Olabiyi et al., 2018), (Shao et al., 2017), (Zhou
et al., 2018), (Zhang et al., 2018), (Devlin et al.,
2018), (Mehri and Carenini, 2017), we chose the
Dual encoder model first introduced by (Lowe
et al., 2015). We trained the model with the same
parameters that (Lowe et al., 2015) did.

3 Experiments and Evaluation

We conduct a series of experiments to compare the
NPCEditor and the Dual-Encoder model. Follow-
ing (Lowe et al., 2015), we use R@k as the evalu-
ation metric, which is the percentage of times that
the expected response is retrieved in the top-k re-
sponses. R@1 is equivalent to accuracy. We first
test the Dual-Encoder model on both the Ubuntu
corpus (to compare with the model in (Lowe et al.,
2015), as a sanity check on the implementation),
and on the Pinchas 10 dataset, which has a test-
set parallel in structure to Ubuntu. Next we com-
pare the NPCEditor and the Dual-Encoder model
on the Pinchas 10 dataset. Then we compare the
performance of the NPCEditor and Dual-Encoder
model on Pinchas 1444 v1 and Pinchas 1444 v2

datasets.

Dataset Pinchas 10 Ubuntu
Model NPCEditor DE DE

1 in 10 R@1 0.78 0.64 0.60
1 in 10 R@2 0.84 0.83 0.74
1 in 10 R@5 0.92 0.97 0.92

Table 1: Results from the experiment 1 and 2 using
various R@k measures.

Pinchas 1444 v2 v1
Model NPCEditor DE DE

1 in 1444 R@1 0.7663 0.1238 0.0625
1 in 1444 R@2 0.8175 0.1939 0.1305
1 in 1444 R@5 0.8758 0.3089 0.2392
1 in 1444 R@10 0.9106 0.4217 0.3441

Table 2: Results from experiment 3 and 4.

4 Results

Experiment 1 showed that the Pinchas data ap-
pears easier than the Ubuntu data - with a much
smaller training set size, the Dual-Encoder model
was able to improve on R@k in the Pinchas 10
dataset compared to the Ubuntu dataset. Experi-
ment 2 showed that given the amount of available
training data (10s of thousands of examples), the
NPCEditor significantly out-performs the Dual-
Encoder model in R@1 on this data set. Experi-
ment 3 showed that the results are even more strik-
ing for a more real-world example, where the sys-
tem’s task is to pick the best response out of a set
of over 1000 available. Here, the Dual-Encoder
model does not perform well enough to engage
in a meaningful dialogue, while the NPCEditor
performs similarly to results reported in (Traum
et al., 2015), which led to much-reported user en-
gagement. The improved performance of the Pin-
chas 1444 v2 training set, with a much higher pro-
portion of negative examples, does perhaps point
to a direction for improvement. Future work
should perhaps look at the even higher distribution
of negative to positive examples.

These results do show that despite the recent
popularity of deep learning models, there is still a
place for more traditional machine learning algo-
rithms, that can operate well on more moderate-
sized data sets for problems of interest. It may
also be the case that different types of dialogue
have different optimal models. For example,
(Gandhe and Traum, 2010) show very different
upper bounds for retrieval approaches to dialogue
in different domains/datasets.
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