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Abstract

In this paper, we build on research which has applied visually-derived features for grounded
semantics by leveraging an additional modality: simulated hand muscle activations. We apply
the Words-as-Classifiers model of grounded semantics to learn a mapping between features from
the two modalities and corresponding hand image descriptions. Our experimental results show
that a multimodal fusion of both visual and muscle features yields improved results for the model
than either of the modalities alone in image and description retrieval tasks. By simulating mirror
neurons, we further show that the simulated muscle activations can be derived from the visual
features and applied to our model.

1 Introduction

Part of the semantic representation and meaning of many words is grounded (Harnad, 1990) in how peo-
ple perceive and experience the physical world. For example, the semantic meaning of the word red is
grounded in a person’s perception and experience in perceiving objects denoted by others as red through
color vision. Though vision is an important and common modality for grounded semantics research,
the semantic meaning of words can also be grounded in other perceptual modalities, such as auditory
(Kiela and Clark, 2015) and olfactory (Grabski et al., 2012) perception. In this paper, we take inspira-
tion from Roy (2005) which set forth a theoretical framework for language grounding from embodied,
situated, sensorimotor primitives to words. We explore an embodied modality of simulated muscle ac-
tivations in hands for grounded semantics. We hypothesize that the meaning of words and descriptions
that are related to human hands, for example, grip, point, and thumbs up, are not only grounded in how
those hand configurations are depicted visually, but also grounded in the muscle activations and muscle
memory required to physically make those hand configurations. We explore this by simulating hand
configurations using a virtual, soft-robotic inspired hand (Schlagenhauf et al., 2018; King et al., 2018)
where the finger positions are defined by simulated muscle activations, which we use as features for the
Words-as-Classifiers (WAC) model (Kennington and Schlangen, 2015; Schlangen et al., 2016) as well
as a WAC-inspired neural network model and show that muscle activations coupled with visual features
strengthen the grounded semantic meaning applied to image and description recall tasks. Our results
could be used to augment human understanding in interactive robots by supporting a growing body of re-
search around an embodied semantics, which postulates that grounding incorporates not only perceptual
modalities, but also sensorimotor modalities (Johnson, 2008; Goertzel et al., 2010).

We further explore a potential approach to modeling mirror neurons in the brain–which discharge not
only during action execution, but also during action observation (Kilner et al., 2009)–which allows our
model to use muscle activations derived from a visual representation of the hands. If an embodied system
(e.g., such as a robot) is to make use of both visual and muscle modalities, then both modalities must
each come from some component that is part of the system where those features can be derived (i.e.,
a robot must have a camera for the visual and a soft-robotic hand for the muscles). It would be more
common, and potentially more useful, for a system to make use of muscle activation information by
simply observing someone else’s hand configuration visually. For example, an individual’s own neurons
are activated for generating a grip in his own hand when that individual sees someone else making a
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grip with her own hand. This is what mirror neurons afford humans, the existence of which has been
fairly well supported (Kilner et al., 2009).1 In summary, we make the following contributions: (1) We
model a form of grounded semantics using muscle activations and visual/image representations of hand
configurations, (2) we offer a set of data which includes images of hands with corresponding descriptions,
simulated muscle activations, and visual/image features, (3) we further a notion of embodied semantics
which leverages from perception (i.e., the outside world) as well as muscles (i.e., the inside, corporeal
world) and offer a simple model for applying mirror neurons.

2 Related Work

Several areas of research play into this work including seminal (Roy and Reiter, 2005; Roy, 2005) and
recent work in grounded semantic learning in various tasks and settings, notably learning descriptions
of the immediate environment (Walter et al., 2014); navigation (Kollar et al., 2010); nouns, adjectives,
and relational spatial descriptions (Kennington and Schlangen, 2015); attributes (Matuszek et al., 2012),
verbs (She and Chai, 2016), and grounded distributional semantics (Bruni et al., 2014). We build on
this previous work in that we represent the grounded semantics by linking meaning with visual features,
yet we go beyond this work in that we consider representations of muscle activations as an additional
modality of semantic meaning.

Other recent work has already gone beyond visual grounded semantics including olfactory perception
(Kiela et al., 2015), auditory perception (Kiela and Clark, 2015), haptics (Alomari et al., 2017), and
multimodal features including haptic, auditory, and proprioceptive (Thomason et al., 2016). Very similar
to our goal of grounding into modalities beyond vision is Marocco et al. (2010) who grounded action
words into sensorimotor actions of a simulated robot.2 Our work is novel in that we are not solely
focusing on a perceptual modality (e.g., such as vision); rather, we are building off of this line of research
to explore corporeal modalities for an embodied semantics.

3 Model: Words-as-Classifiers

The WAC model follows Larsson (2015) as a simple approach to bridging grounded and formal seman-
tics. It has recently been shown to yield state-of-the-art results in a reference resolution task using deep
neural networks to represent photographs (Schlangen et al., 2016) as well as in real-time dialogue sys-
tems that can resolve references made to visual objects (Manuvinakurike et al., 2016). Following Zarrieß
and Schlangen (2016), the WAC model is essentially a task-independent approach to predicting semantic
appropriateness of words in physical contexts and can be flexibly combined with task-dependent decod-
ing procedures. The WAC model pairs each word w in its vocabulary V with a classifier that maps the
real-valued features x of an object obj to a semantic appropriateness (i.e., class membership) score:

[[w]]obj = λx.pw(x) (1)

For example, to learn the connotative meaning of the word grip, the low-level features (i.e., visual,
sensorimotor, etc.) of all objects described as grip in a corpus of referring expressions are given as
positive instances to a supervised learning classifier. Negative instances are randomly sampled from the
complementary set of utterances (i.e., not containing the word grip). This results in a trained λx.pgrip(x),
where x is a novel object (in our case, features representing a hand pose) that can be applied to grip to
determine class membership. Traditionally, the WAC model has been applied using independent linear
classifiers, such as logistic regression. In this paper, we apply both this traditional approach to our
task, and we also apply the WAC model using a neural network where the fitness score is applied to all
words in the vocabulary (which makes up the top layer), thereby reducing the independence between the
classifiers. We chose WAC because of its simplicity and interpretability, and neural networks have been
shown to yield state-of-the-art performance in many tasks. Both approaches to WAC learn a mapping
between non-linguistic features and words.

1Though the existence and function of mirror neurons is not without debate (Dinstein et al., 2008).
2Similar in some ways to Grabski et al. (2012), we also explore how mirror neurons can be used to derive muscle activations

from visual features (originally published in French).
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Figure 1: The process of
gathering simulated hand
pictures from a variety of
poses

4 Data: The Multimodal Hand Corpus

In this section, we describe our approach to generating hand configurations with corresponding images,
descriptions, and muscle activations which we used in our experiments.

4.1 Creating a Simulated Soft Hand

We generated simulated hand configurations by leveraging and expanding upon a soft body Forward
Simulation Model (FEMSim) (Bern et al., 2017) which models a discretized two-dimensional soft object
with simulated muscles that lie along the perimeter of the object. These muscles can be contracted,
resulting in a state of the object (in our case, fingers of hands) where the potential energy is the lowest.
For the purposes of this work, we expanded this model to support three dimensions, with muscles that run
along the surface of the fingers. Because this model was more detailed than FEMSim simulation would
reasonably support, we used the program MeshLab to perform a Quadric Edge Collapse Decimation
and bring the model from over 56,000 faces to 1,000 faces. We then used a program called TetGen to
tetrahedralize the mesh and generate the internal structure of the hand.

We added the muscles on the skin of the simulated hands with the constraint that each muscle must
be able to naturally contract each finger. Each muscle is a collection of nodes of a mesh representing
the simulated hand. The muscle imposes a soft constraint on the energy model of the soft object that
allows the soft material to contract along the muscle nodes. A real number ranging from 0.0 to 1.0,
which we denote as muscle activation values, is assigned to each muscle at every simulation step. Higher
muscle activation values denote greater force that each muscle imposes in contracting the simulated
nodes. Although the human hand contains dozens of muscles, we were constrained by the limits of
our simulation to place 5 muscles on the hand to generate realistic motions. This resulted in a muscle
from the tip of each finger to the palm. To allow for a greater range of motion and expression in the
thumb, a 6th muscle connects the tip of the thumb and the wrist through the back of the hand. This
approach led to the challenge of ensuring that the two thumb muscles worked together to produce natural
thumb movements that mimicked human range of movements. As a result, we developed a coupling
mechanism to abstract the two thumb muscles into a singular thumb muscle activation: higher thumb
muscle activations result in the thumb approaching the palm of the hand.

4.2 Generating Hand Poses

After simulating a soft hand with acceptable movement fidelity to real hands, we captured images and
recorded the corresponding muscle activations of different hand configurations. After placing the mus-
cles on the simulated hands, we sampled the space of hand configurations by activating each muscle in
the vector t in the activation space s and recording the resultant hand configuration. This resulted in
|s||t| total hand configurations. Because of this exponential nature, we constrained the muscle activation
space s to be [0.0, 0.3, 0.7] as we found these activations to provide a meaningful range of distinguishable
finger motions. In total, we generated 35, or 243 distinct poses.

We captured each hand pose through four different visual perspectives: straight (i.e., facing the palm),
above (i.e., above the hand, facing downwards), left (i.e., with the thumb towards the camera), and
behind (i.e., facing the back of the hand). See Figure 3 for one hand configuration from two of the four
perspectives. This process resulted in a total of 972 images of hand configurations (243 hand poses * 4
camera angles; termed as perspectives below). Figure 1 depicts the entire process.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Figure 2: Evaluation strategy: select the high-
est scoring candidate from a set of N distrac-
tors and the gold image, given the description.

Figure 3: Two perspectives of the same muscle acti-
vation / hand configuration (left image: left perspec-
tive, right image: straight perspective).

4.3 Obtaining Image Descriptions
For the final part of our corpus, we used Amazon Mechanical Turk to obtain a description for each
generated image. Each participant read and agreed to an informed consent, then they were taken to a
web page that displayed 20 randomly selected hand images from our set, each with a text input box.
They were given instructions to describe each hand pose as they would to a friend.

This collection resulted in two descriptions for each of the 972 images. After removing one description
for inappropriate content, this resulted in 13,657 word tokens and a vocabulary size of 1,376. The average
length of the descriptions was 7 words (std 4.72), where the most common number of words in a descrip-
tion was 2 (217 times). The most commonly used word was hand (685 occurrences) followed by fingers
(525). 702 words occur once, and 185 words occur twice. Examples of words occurring once include
piano, scratch, and doornob. The following are examples of descriptions from four images that were
taken from the different perspectives (each perspective is denoted before each description) of the same
hand configuration, which had a muscle activation of [0,0,0.3,0,0] (i.e., all fingers are straight except for
the middle finger, which is slightly bent). Figure 3 corresponds to the left and straight descriptions:

1. straight: too little
2. above: the fingers and hand are curled as if holding a computer mouse but the thumb is outstretched
3. left: relaxed hand puppet
4. behind: fingers partially close thumb extended outward index finger slightly extended

We point out that these descriptions all described hands that had the same configuration (i.e., muscle
activations), but since the task was a description of what they saw visually, and each depiction was from
a different perspective, the descriptions can be quite varied. This tells us that our data captures something
slightly more challenging than simply determining the name of an object: a configuration of a hand can
be described in many different ways depending on the perspective.

5 Experiment 1: Hand Image Retrieval

In this section, we explain how we applied our model and data in an image retrieval task.

5.1 Task & Procedure
We follow Han et al. (2015) and Han and Schlangen (2017) and use a retrieval task to evaluate our model
(we leave other informative evaluations, such as generating descriptions from features, as future work).
That is, after our model has been trained, for each test instance we randomly select m distractor hand
perspectives and our model is to pick out the correct hand perspective, given the description. We trained
on all of the training data, and cross-validated the heldout data which comprised 10% of the data (i.e.,
195 instances) with four folds, averaged over five runs, on three model variants which we describe below:

• muscle - only uses features related to 5 muscle activations and the orientation of the image
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• visual - only uses visual features
• muscle+visual - use all muscle and all visual features

Representing the Features The muscle features are represented as real numbers between 0.0 and 1.0,
where 0.0 represents no muscle activation and 1.0 represents full muscle activation (e.g., a hand where all
5 fingers are in a tight grip would have all five activations near 1.0; a relaxed hand would have all muscle
activations near 0.0). For visual features, we apply a transfer learning approach (Pan and Yang, 2010) and
use a pre-trained VGG19 convolutional neural network (CNN), which takes in an image at the bottom
layer and outputs a softmax distribution over 1000 possible classes (Simonyan and Zisserman, 2014).
The VGG19 was trained on the ILSVRC-2012 data set which contains 1.3 million images grouped into
1000 classes (i.e., the images depicted individual entities such as an animal or an object). We used the
development data to empirically determine parameters, including which layer of the VGG19 model that
we should use. We also included four binary features that represented the particular perspective (i.e.,
straight, above, left, behind) of the image. This resulted in 5 possible muscle features and 1004 possible
visual features for our model.

Models We performed the experiment on two WAC model variants: logistic regression (WACLR) and
a neural network (WACNN ). For the WACLR variant, we used scikitlearn (Pedregosa et al., 2011) for
each word w in the vocabulary by taking all descriptions where w was found and used the corresponding
features for the hand configuration. This resulted in a separate classifier for each word in the vocabulary.
For the WACNN variant, the input features were identical to that of WACLR, but in keeping in the spirit
of WAC, the top layer was the full vocabulary. We used a dense input layer (activation=tanh) where the
input shape was the number of features (which varied depending on the modalities being evaluated), an
additional dense layer (activation=tanh) which had |V | ∗ 2 neurons, and a top (activation=softmax) layer
where the words in the vocabulary made up the class labels. We used the Adam (Kingma and Lei Ba,
2015) optimizer (learning rate=0.001) and categorical cross-entropy for gradient descent for 15 epochs
(batch=256). We determined these parameters empirically by cross-validating on our training data.

Training For WACLR we train individual classifiers for each word, where each classifier can determine
the probability of class “fit”, and for WACNN , we train a single model which yields a softmax distribution
for class “fit” for all words in the vocabulary. For the muscle variant, we only used the 5 muscle-related
features, for the visual variant , we used the 1004 image features, and for the muscle+visual variant we
used all of the features (i.e., muscle and visual concatenated) to give to each w as positive examples and
randomly selected negative examples from descriptions that did not use w. For each positive example,
we used three negative examples (the number of negative examples was also determined using the de-
velopment set of our data). This means that, at a minimum, each word had at least 4 training instances
(i.e., for words which only showed up once in our data). We removed several words from our vocabulary
which were common in many of the descriptions (hand, and, the, a, with, is, are, to, and of ) which
would provide minimal semantic value. Note that for WACNN , we tested L1 and L2 regularization using
a development set of data without any additional benefit.

Testing For each word w in each description, we apply the features of each of our distractor hand
configurations as well as the true hand configuration as candidates to the WAC for that w (for the WACNN

variant, we obtain the probability for w in the top layer’s distribution) and compose a final probability
over all of the candidates, adding together the results for each candidate. We take the argmax of the
distribution as the model’s guess and check if it is the true hand configuration which belongs to the
description. This process is represented in Figure 2.

Metrics We use the accuracy of choosing the true hand configuration for all of the data in our cross-
validation for each model variant using 1 to 5 distractors. The baseline for this model is random, or
1/(m+1) where m is the number of distractors. We hypothesize that the muscle variant will perform
above baseline, but will not perform as well as visual because the descriptions were based on visual
images, not on muscle activations. We further hypothesize that the multimodal muscle+visual variant
will have the highest performance.
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Figure 4: Results for Experiments 1 (image re-
trieval), 2 (description retrieval), and 3 (mirror neu-
rons), where cross-validation was performed using
the WACLR variant of WAC. Experiment 1 results are
solid, Experiment 2 results are dashed, Experiment
3 results are dotted.

Figure 5: Results for Experiments 1 (image re-
trieval), 2 (description retrieval), and 3 (mirror neu-
rons), where cross-validation was performed using
the WACNN variant of WAC. Experiment 1 results
are solid, Experiment 2 results are dashed, Experi-
ment 3 results are dotted.

Results For easier comparison across experiments, we grouped our results into two figures. The results
for the cross-validation performed using the WACLR is shown in Figure 4 as solid lines. The results for
the cross-validation performed using the WACNN is shown in Figure 5 as solid lines. As hypothesized,
the multimodal muscle+visual model variant yields the highest performance. The muscle activations
were above baseline, but do not perform very well on their own. Moreover, each hand configuration had
multiple images associated with it (i.e., from different angles), each of which had distinct descriptions.
This would cause confusion when WAC learned a mapping between muscle activations and words of a
description. Unexpectedly, the differences in the modalities are more pronounced with the WACLR model
variant, despite is linearity assumption.

6 Experiment 2: Description Retrieval

In this section, we explain how we applied our model and data in a description retrieval task.

Task, Procedure & Metrics An equally important evaluation of our model reverses the retrieval task
in Experiment 1. That is, for each test instance, we randomly select m distractor descriptions and task
our model with picking out the correct description given the hand configuration features. We perform a
4-fold cross-validation using the heldout data on the three variants explained in Experiment 1. Moreover,
instead of composing together the probability of each word in each description by summing, we average
the probabilities of all words in each description so that longer descriptions are not favored by the model.
The metrics for this experiment are similar to Experiment 1 except that we use the accuracy of the model
choosing the true description for the corresponding hand configuration.

Results The results for the cross-validation performed using WACLR is shown in Figure 4 and using
WACNN in Figure 5 as dashed lines. These results are comparable in trend to Experiment 1, with slightly
lower scores overall. The visual+muscle modalities together perform better than visual or muscle alone.
As in Experiment 1, WACNN does not yield as high results as WACLR. This is possibly due to the sparsity
of the data, but also potentially due to the way the two variants were approached: treating the WACLR

classifiers independently has some utility when the data are somewhat sparse.
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7 Experiment 3: Simulation of Mirror Neurons

In this experiment, we repeat the task and procedure of Experiment 1 using muscle activations that are
derived from the visual features.

Task, Procedure & Metrics The values that make up the muscle features are not directly observable
like they were in Experiment 1. We train a Ridge Regression classifier that maps from the 1004 visual
features to the 5 muscle features. We use the training data to learn this mapping, then pass each heldout
image through the trained classifier to create a new set of muscle features that were derived from the
visual features. This simulates, we claim, a very simplified function of mirror neurons; i.e., by observing
a hand configuration visually, not only can a system use the visual features directly, the system can also
derive muscle features from the visual features (RMSE on the development data is 0.0757). The training
for WACLR and WACNN is the same as Experiment 1; we train using the original data (i.e., a robot that
is making use of visual information to derive muscle information uses the model trained using its own
muscle activations). The metrics for this experiment are the same as Experiment 1.

Results The results for the cross-validation performed using WACLR is shown in Figure 4 as dotted
lines; WACNN is shown in Figure 5, also as dotted lines. The trend is largely the same as Experi-
ments 1 and 2, with muscle working well above baseline, visual working well above muscle, and the
visual+muscle performing the best for the WACLR variant, though, as expected, lower overall when com-
pared to Experiment 1, because the model is not using the true muscle values. For WACNN , the story
is somewhat different from the first two experiments: not only is muscle above baseline, muscle alone
performs better than visual, though visual+muscle perform the best. We explain this surprising, yet wel-
come, result by noting that the muscle features used in this experiment were derived from the visual
features using Ridge Regression, resulting in muscle activation values that ranged more continuously
between 0 and 1, whereas the muscle values in Experiments 1 and 2 were more discrete (i.e., values
0.0, 0.3, and 0.7). The WACNN model can make use of finer distinctions in the features better than the
WACLR variant, and the wider variety in data may reduce overfitting in the WACNN model .

8 Analysis

To understand the model’s interpretation of the semantics of hand poses, we train the WACLR and the
WACNN models as explained in Experiment 1 (i.e., muscle+visual) and isolate word w, then apply the
model to all images, resulting in a fitness score pw for that word. We then ranked the probabilities,
resulting in the top x images for w. The x images are then grouped by perspective, and each of the four
groups of perspectives are blended together to create four final images representing what a prototypical
hand configuration would look like for w. For cases when a particular perspective was not represented in
the top x images, then that perspective is labeled Blank Image. The more defined a region of the image,
the more often this region of the image was represented in all of the x images. This allows us to analyze
the overall “look” of a word by visualizing what configurations and perspectives in the image are more
solid. Our chosen words are: pointing, fist, ok, palm, and typing.

pointing After applying all images to the trained WACLR classifier for the word pointing (which occurred
103 times in our data), we took the 100 best fit images to produce Figure 6. We then repeated the above
steps for the trained WACNN classifier and generated Figure 7. All perspectives in both figures outline
a pointing hand, with the index finger extended; other fingers mostly contracted. This shows that both
models learned the prototypical grounded meaning of the word pointing. The results from the WACNN

are similar to the results from the WACLR, with the WACNN variation showing a slightly more relaxed
pointing hand than the WACLR variation.
fist, ok, palm and typing Figure 8 shows the top 100 images that the WACLR model learned to associate
with the words fist, ok, palm, and typing. Each word occurs 62, 27, 184, and 23 times respectively in our
data (we point out that WAC learned a reasonable semantics using only 23 examples for typing). Each
word only has one perspective in the top 100 images (all four of the words’ images are shown in one
figure), showing that the perspective of hand pose may have a large impact on the image description. For
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Figure 6: Blended fit for word
pointing using WACLR gener-
ated from the top 100 images.
Blank Image means no images
for that perspective.

Figure 7: Blended fit of the
word pointing using WACNN

generated from the top 100 im-
ages. In this case, all perspec-
tives are represented.

Figure 8: Blended fits for fist,
ok, palm, and typing where
only one perspective contained
any images; generated from the
top 100 images using WACLR.

fist, the behind perspective is shown, where all of the fingers are curled. For ok, the left perspective is
shown, and the index finger is extended because human participants often used phrases such as going to
make an ok sign. For palm, the straight perspective is shown, and the model learned that the position
of the fingers plays little importance as long as the palm of the hand is showing. For typing the above
perspective is shown. These demonstrate that the model learned the semantics of very specific words.

9 Discussion & Conclusion

In this paper, we presented novel, multimodal data which included simulated muscle activations with
corresponding generated images and descriptions. We applied the multimodal data to the WAC model
which learned a form of grounded semantics between words and two modalities of hand configurations:
simulated muscle activations and visual representations. We showed that the model performed well
above baseline using muscle activations alone, better with visual features derived from a VGG19 model,
and the best when both modalities were present in a challenging image and description retrieval task. We
also took inspiration from mirror neurons and applied a simplified approach to derive muscle features
from the visual features, which yielded good results in an image retrieval task. We then analyzed our
model and showed that WAC indeed learned to pick out prototypical hand configurations from the data.

A limitation of our solution is a lack of understanding of those external objects with which a hand
might interact. For example, in the description holding a small ball, our model does not comprehend the
physical meaning behind ball. We could augment our simulation with objects (such as balls) to provide
our model information about external objects. Furthermore, instead of considering words independently,
our model could be improved to develop a more contextual understanding.

Our work can potentially be applied to hand gesture recognition and sign language recognition through
the use of mirror neurons, which we leave for future work. Moreover, our work furthers the notion that
valuable information lies in embodied modalities. Roy (2005) stresses ”the importance of binding sym-
bols to sensorimotor representations, as evidenced by recent experiments that probe the embodied nature
of cognitive processes.” We envision a unified semantic theory that brings together distributional embed-
dings and grounded semantics (as posited in Thill et al. (2014)), which includes corporeal modalities. In
the future, we hope to tackle a hand pose description generation task, as well as gathering hand descrip-
tions from human participants experiencing the embodied sensation of particular hand poses. The code
we used for the modeling and experiements and multimodal hand dataset are available.3

3https://github.com/bsu-slim/WAC-Hands
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