
Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Towards KoS/TTR-based proof-theoretic dialogue management
Vladislav Maraev1, Jonathan Ginzburg2, Staffan Larsson1,

Ye Tian3,2 and Jean-Philippe Bernardy1

1Centre for Linguistic Theory and Studies in Probability (CLASP),
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg

{vladislav.maraev,staffan.larsson,jean-philippe.bernardy}@gu.se
2Laboratoire Linguistique Formelle (UMR 7110), Université Paris Diderot

yonatan.ginzburg@univ-paris-diderot.fr
3Amazon Research Cambridge
tiany.03@gmail.com

Abstract

This paper presents the first attempt to implement a dialogue manager based on the KoS frame-
work for dialogue context and interaction. We utilise our own proof-theoretic implementation
of Type Theory with Records (TTR) and implement a basic dialogue that involves mutual greet-
ing. We emphasize the importance of findings in dialogue theory for designing dialogue systems
which we illustrate by sketching an account for question-answer relevance.

1 Introduction

One of the most challenging tasks in the design of dialogue systems concerns their capability to support
dialogue strategies that are similar to ones that happen in a dialogue between human participants. The
key component of a dialogue system in this aspect is the dialogue manager, which selects appropriate
system actions depending on the current state and the external context.

Two families of approaches to dialogue management can be considered: hand-crafted dialogue strate-
gies (Allen et al., 1995; Larsson, 2002; Jokinen, 2009) and statistical modelling of dialogue (Rieser and
Lemon, 2011; Young et al., 2010; Williams et al., 2017; Eshghi et al., 2017). Hand-crafted strategies
range from finite-state machines and slot-filling to more complex dialogue planning and logical infer-
ence rules. Statistical models help to contend with the uncertainty that arises from noisy signals that arise
from speech recognition and other sensors.

Although there has been a lot of development in dialogue systems in recent years, only a few ap-
proaches to dialogue management (Allen et al., 1995; Poesio and Traum, 1997; Larsson and Traum,
2000; Larsson, 2002) reflect advancements in dialogue theory (Ginzburg, 1996; Asher and Lascarides,
2003), and there has not been much progress in this respect since the early 2000s. Our aim is to closely
integrate dialogue systems with work in theoretical semantics/pragmatics of dialogue which allows cre-
ating more human-like conversational agents. Here we illustrate this by exemplifying a rudimentary
but potentially deep theory of answers which will be extended further in order to support phenomena
discussed in Bos and Gabsdil (2000).

KoS (not an acronym but loosely corresponds to Conversation Oriented Semantics) (Ginzburg, 2012)
provides among the most detailed theoretical treatments of domain general conversational relevance,
especially for query responses—see Purver (2006) on Clarification Requests, (Łupkowski and Ginzburg,
2017) for a general account— and this ties into the KoS treatment of non sentential utterances, again a
domain crucial for naturalistic dialogue systems and where KoS has among the most detailed analyses
(Fernández et al., 2007; Ginzburg, 2012).

KoS is based on the formalism of Type Theory with Records (TTR). There has been a wide range
of work in this formalism which includes the modelling of intentionality and mental attitudes (Cooper,
2005), generalised quantifiers (Cooper, 2013), co-predication and dot types in lexical innovation, frame
semantics for temporal reasoning, reasoning in hypothetical contexts (Cooper, 2011), spatial reasoning
(Dobnik and Cooper, 2017), enthymematic reasoning (Breitholtz, 2014), clarification requests (Purver,



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

2006; Ginzburg, 2012), negation (Cooper and Ginzburg, 2012), non-sentential utterance resolution
(Fernández et al., 2007; Ginzburg, 2012) and iconic gesture (Lücking, 2016).

In the rest of the paper we briefly survey the basic features of KoS and TTR (section 2), describe our
implementation (section 3) and a minimal working example of rules for a dialogue system (section 4).
We illustrate this by an initial sketch of a theory of answers (section 5). We conclude with some brief
discussion and pointers to future work.

2 A brief account of KoS and TTR

KoS (Ginzburg, 2012) is a formal semantic framework based on Type Theory with Records (TTR),
oriented at dialogue, capturing the features of conversational interaction. In KoS (and other dynamic
approaches to meaning), language is compared to a game, containing players (interlocutors), goals and
rules. KoS represents language interaction by representing the dynamically changing context. The mean-
ing of an utterance is how it changes the context. Compared to most formal semantics approaches (e.g.
Roberts (2012), which represent a single context for both dialogue participants), KoS maintains a sep-
arate representation for each participant, using the Dialogue Game Board (DGB). DGBs represent the
information states of the participants, which comprise a private part and the dialogue gameboard that
represents information arising from publicized interactions. This tracks, at the very least, shared as-
sumptions/visual space, moves (= utterances, form and content), and questions under discussion.

In TTR agents perceive an individual object that exists in the world in terms of being of a particular
type. Such basic judgements performed by agents can be denoted as “a : Ind”, meaning that a is an
individual, in other words a is a witness of (the type) Ind(ividual). This is an example of a basic type
in TTR, namely types that are not constructed from other types. An example of a more complex type in
TTR is a ptype which is constructed from predicates, e.g. greet(a, b), “a greets b”. A witness of such a
type can be a situation, a state or an event. To represent a more general event, such as “one individual
greets another individual” record types are used. Record types consist of a set of fields, which are pairs
of unique labels and types. The record type which will correspond to the aforementioned sentence is the
following:

(1)

 x : Ind
y : Ind
c : greet(x,y)


The witnesses of record types are records, consisting of a set of fields which are pairs of unique labels
and values. In order to be of a certain record type, a record must contain at least the same set of labels as
the record type, and the values must be of a type mentioned in the corresponding field of the record type.
The record may contain additional fields with labels not mentioned in the record type. For example, the
record (2) is of a type in (1) iff a : Ind, b : Ind, s : greet(a, b) and q is of an arbitrary type.

(2)


x = a
y = b
c = s
p = q


In our Dialogue Manager, a state is represented as a pair of a type S and an object s witnessing it. For
example, if S is a record type containing greet(a, b), then s will contain an event witnessing the greeting.
These abstract types and witnesses can be mapped to utterances using NLU and NLG.

TTR also defines a number of type construction operations. Here we mention only the ones that are
used in the current paper:

1. List types: if T is a type, then [T ] is also a type – the type of lists each of whose members is of type
T. The list [a1, . . . , an] : [T ] iff for all i, ai : T . Additionally, we use a type of non-empty lists,
written as ne[T ], which is a subtype of [T ] where 1 ≤ i ≤ n. We assume the following operations
on lists: constructing a new list from an element and a list (cons), taking the first element of list



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

(head), taking the rest of the list (tail).

cons : T → [T ]→ ne[T ]

head : ne[T ]→ T

tail : ne[T ]→ [T ]

2. Function types: if T1 and T2 are types, then so is (T1 → T2), the type of total functions from
elements of type T1 to elements of type T2. Additionally, T2 may depend on the parameter (the
witness of type T1 passed to the function).

3. Meet types: if T1 and T2 are types, then T1 ∧ T2 is also a type. a : T1 ∧ T2 iff a : T1 and a : T2.

4. Singleton types: if T is a type and x:T, then Tx is a type. a:Tx iff a = x. In record types we use
manifest field notation to a represent singleton type. Notations

[
a : Tx

]
and

[
a=x : T

]
represent

the same object.

3 Implementation

Our dialogue manager (DM) is based on a new implementation of Cooper’s TTR (Cooper, in prep). The
important parts of this implementation are: a type-checker, a subtype checker and a rule-application
mechanism. Figure 1 shows such a dialogue manager integrated into a spoken dialogue system.

The type-checker’s implementation follows the structure of MiniTT (Coquand et al., 2009). However
the type system itself closely follows that described by Cooper. The significant differences are:

1. A more flexible behaviour for meet types: when applied to record types the meet operator reduces
to another record type if possible. For example, [f : A]∧[f : B, g : C] reduces to [f : A∧B, g : C].
This change means that meet behaves as the merge (∧. ) operator in Cooper’s work.

2. Support for boolean types (true : Bool) and (false : Bool), as well as conditionals, such that “(IF
true THEN x ELSE y) = x” and “(IF false THEN x ELSE y) = y”.
With boolean types and records we can construct the type A tB, which is the disjoint union of the
arbitrary types A and B. It is defined as:

(3) A tB =def

[
choice : Bool
result : IF choice THEN A ELSE B

]
The rule-application mechanism is implemented as a thin layer over the typechecker and subtyping al-
gorithm. The behaviour of the DM is implemented as a set of rules (see below), which are parsed,
type-checked and evaluated to normal forms1. Then, at runtime, the dialogue manager maintains its state
(dialogue state) as a pair of a value (s) and a type (S), such that s : S2. A rule r can be applied iff its type
is a function type whose domain is a supertype of Ss. Formally, the applicability condition is r : A→ B
and Ss v A. After an application of the rule r, the dialogue manager state becomes the pair (r(s), B). At
any point, several rules may apply. There are several possible rule-selection strategies. Useful strategies
include backtracking search and user-defined selection.

4 TTR account for a dialogue system: a minimal example

As a starting point we define a basic set of rules that supports a very basic interaction (4) between an
agent (A) and a user (U).

(4) U: hello
A: Hello world!

1by applying beta reduction, field extraction and the if-then-else rules shown above.
2And, additionally, s : Ss, by definition of singleton types.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Knowledge Base

Type Checker

Rule application

EvaluationSubtyping

DM
s : S

NLU and ASR

NLG and TTS

,
user

rules

verified rules user moves

agent moves

Figure 1: Architecture of a spoken dialogue system with a proof-theoretic dialogue manager.

Primary KoS types For the current purposes, we do not consider the user’s information state; we
manipulate solely the the agent’s information state. We implement a minimal version of an agent’s
information state (5) consisting of a private part (a list of moves to be emitted) and a public part—the
dialogue gameboard (DGB). In future work the DGB will be extended to support turn taking, questions
under discussion, facts and other notions defined in (Ginzburg, 2012).

(5) InformationState =def

 private :
[

agenda : [Move]
]

dgb :
[

moves : [Move]
latestMove : Move

] 
By Move we mean a type albeit akin to Ginzburg’s definition of illocutionary proposition:

(6) Move =def

 spkr : Ind
addr : Ind
content : MoveContent

,

where MoveContent is a record type containing a proposition; for greeting it will correspond to[
c:greet(spkr,addr)

]
composing the record type (7) either produced by agent or by user.

(7) GreetingMove =def

 spkr : Ind
addr : Ind
content :

[
c:greet(spkr,addr)

]


Initial Dialogue State In order to implement an initial dialogue state we initialise the dialogue state to
be the record (8) of a type InformationState, where ∅ is an initial dummy move.

(8) init =def

 private =
[

agenda = []
]

dgb =
[

moves = []
latestMove = ∅

] 
Conversational rules As a means of describing general, cross-domain patterns of conversational in-
teraction conversational rules are provided in the form of functions that manipulate the dialogue state.
One might expect that they would have the type (InformationState→InformationState). However, some
rules will take as input (or provide as output) subtypes of InformationState. We define two basic rules:
for the agent’s reaction to the user’s greeting3 counterGreeting (9) is used and fulfilAgenda (10)—the

3For simplicity we restrict this rule to the case when only the agent can perform countergreeting.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

rule pops information from the agenda (moves that have taken place) and puts it on the DGB. This set
of rules will be extended to support other dialogue phenomena, such as turn-taking4, adjacency pairs,
queries, assertions etc. Domain-dependent dialogue strategies will be supported in a similar fashion.

(9) counterGreeting : InformationState

∧

 dgb :

 latestMove :

 spkr=user0 : Ind
addr=agent : Ind
content :

[
c : greet(spkr,addr)

]


→ InformationState ∧
[

private :
[

agenda : ne[Move]
] ]

counterGreeting =def λs. private =

 agenda = cons(

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
 , s.private.agenda)


dgb = s.dgb

,

where gs(agent,user0) : greet(spkr,addr) is a greeting situation.

(10) fulfilAgenda : InformationState ∧
[
private:

[
agenda : ne[Move]

]]
→ InformationState

fulfilAgenda = λs.

 private =
[

agenda = tail(s.private.agenda)
]

dgb =
[

latestMove = head(s.private.agenda)
moves = cons(s.private.agenda, s.dgb.moves)

] 
NLU and NLG In order to integrate the user’s move—a result of natural language understanding—the
rule (11) is defined. The move for natural language generation is selected automatically in the case of
having non-empty agenda.

(11) integrateUserMove : Move→ InformationState→ InformationState
integrateUserMove = λm.λs. private = s.private

dgb =
[

latestMove = m
moves = cons(m, s.dgb.moves)

] 
Greeting example In Appendix A we present an example of applying the update rules in order to
establish the basic greeting exchange (4).

5 Primary treatment of question-answer relevance

5.1 Questions
We provide a general definition of question, as a way to establish a connection between a possible answer
and its expected meaning in a given context:

(12) Question : Type

Question =def

[
A : Type
Q : A→ Prop

]
,

where the field A corresponds to the expected type of an answer and the field Q is a family of propositions,
such that for any answer a, Q(a) is the meaning of answer a as a proposition. In other words, Q is the
family of expected answers, as propositions.

We can define subtypes for polar and wh- questions as follows:

(13) PolarQuestion =def

[
A=Bool : Type
Q : A→ Prop

]
(14) UnaryWhQuestion =def

[
A=Ind : Type
Q : A→ Prop

]
4Procedural coordination can be established in KoS via rules for turn assignment. We thank an anonymous reviewer for

SEMDIAL for raising this issue.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

We can illustrate the semantic interpretation of polar questions (15) and unary wh-questions (16) as
follows5:

(15) J“Do you live in Paris?”K =
[

A = Bool
Q = λa. IF a THEN live(Paris) ELSE ¬live(Paris)

]
(16) J“Where do you live?”K =

[
A = City
Q = λa.live(a)

]
5.2 Answers

For every question q :
[

A : Type
Q : A→ Prop

]
, we construct a type of answers that fully resolve the posed

question:

(17) Answer : Question→ Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
,

where the first field is an answer of the type presumed by the question q and the second field represents
the situation where the answer to the question holds, or in general a witness that the answer is correct. In
type theory, this witness is necessary to consider the proposition associated with the answer as true.6

Continuing the examples (15, 16) above, we can see how possible answers (20, 21) can be interpreted
in the context of the corresponding questions . First, we compute the type of answers:

(18) Answer(J“Do you live in Paris?”K)

=

[
answer : Bool
sit : IF answer THEN live(Paris) ELSE ¬live(Paris)

]
(19) Answer(J“Where do you live?”K)

=

[
answer : City
sit : live(answer)

]
Then we see that suitable answers have the appropriate type:

(20) J“yes”K : (q : PolarQuestion)→ Answer(q)

J“yes”K = λq.
[

answer = true
sit = slp

]
(21) J“in Paris”K : (q : UnaryWhQuestion)→ Answer(q)

J“in Paris”K = λq.
[

answer = Paris
sit = slp

]
where slp is such a situation where user lives in Paris.

5.3 Interpreting answers in form of propositions
Not all answers are provided as a simple element of the requested types. Instead, an utterance can take
the form of a declarative sentence which can be interpreted as a proposition (P : Prop) and a witness
(p : P ). We now describe a heuristic procedure which can be used to check if such an utterance can be
interpreted as an answer to a given question (q : Question), and if so, how.

1. Unify q.Q(a) with P , where a is a fresh metavariable. If unification succeeds, it will yield a
substitution σ, such that q.Q(σ(a)) = P .

5Following the simplification made in Larsson (2002) we are using reduced semantic representations, e.g., live(Paris)

instead of
[

x=user0
c=live(Paris,x)

]
.

6In a dialogue system the user will in general be trusted, and so the witnesses will only consist of a representation of
the users’ utterances in context. This could be represented formally by making the situation depend on the agent’s context:
slp(ctxt). Conversely, when the system replies to the user, requiring a witness means that the system must be able to justify its
answer using facts from a knowledge base or a proof constructed from those.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

2. Construct an answer as
[

answer = σ(a)
sit = p

]
: Answer (q). Indeed the record fields have the expected

types: i) σ(a) : q.A because a occurs as an argument to q.Q, and ii) p : q.Q(σ(a)) because p : P
and P = q.Q(σ(a)).

For example, assume J“I live in Paris”K =
[

P = live(Paris)
p = slp

]
and q as in (16). We thus unify live(Paris)

with q.Q(a) = live(a) and find σ(a) = Paris. The answer is then
[

answer = Paris
sit = slp

]
.

5.4 Partial resolution of questions
In any question context, an utterance can either be unrelated to the question at hand, fully resolve the
question or partially resolve it. Thus, in a spoken dialogue system, one should have a procedure to
classify utterances in this way.

(22) questionResolutionClassifier : Utterance→ (q : Question)
→ UnrelatedUtterance t ResolvingAnswer(q) t PartiallyResolvingAnswer(q)

The implementation of such a classifier may use the procedure described in the above section — we will
not discuss it further here and just assume that its output is available. Resolving answers were discussed
above in section 5.2, and further interpretation of unrelated utterances is out of the scope of this paper.
In the rest of the section we propose a treatment for partially resolving answers.

(23) ResolvingAnswer(q) =def Answer(q) = λq.
[

answer : q.A
sit : q.Q(answer)

]
(24) PartiallyResolvingAnswer(q) =def

[
qrem : Question
resolution : Answer(qrem)→ Answer(q)

]
That is, a partial answer is understood as a pair of i) the question that remains (qrem) and ii) a resolution,
which provides a way to fully resolve the initial question from the answer to qrem.

We illustrate the partial resolution of a question with an example from a prototypical goal-oriented
dialogue system that operates incrementally, on input that is smaller than utterances (Schlangen and
Skantze, 2009):

(25) A: What do you want today?
U: A beer, please, and chips.

We assume that q1 has a domain-specific interpretation.

(26) q1 = J“What do you want today?”K =

A =
[

food : Food
drink : Drink

]
Q = λa.order(a.food, a.drink)


(27) a1 : PartialAnswer(q1)

a1 = J“A beer please”K =


qrem =

[
A = Food
Q = λa.order(a, beer)

]
resolution = λarem.

 answer =
[

food = arem.answer
drink = beer

]
sit = arem.sit




We can interpret the remaining implicit question a1.qrem as something similar to “Would you like any
food with your beer?”.

(28) a2 = J“and chips”K =
[

answer = chips
sit = sb&c

]
, where sb&c is a situation when customer wants beer

and chips.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

We can see that (28) is an answer that fully resolves a1.qrem and thereby q1.
We are aware of the existence of situations when a1 might fully resolve q1. Handling this would

require a notion of planning and question resolution according to the plan (Larsson, 2002). This issue
will be addressed in future work.

6 Discussion: update rule output as objects or types

The formalisation of information state update proposed here is slightly different from previous work. In
(Cooper, in prep), update rules are functions of the form f = λr : A.B(r) with type f : A → Type.
An issue with this formulation is that the output of a rule is a type (S′), while rules take as input objects
(s). Therefore, after application of any rule, an object s′ of type S′ needs to be constructed, to be used
as input to the next rule. If the type S′ is a fully specified type (i.e., it is a singleton type or a record type
whose components are fully specified), this computation is possible because an object of a fully specified
type can be constructed as record s′ with the same fields as the record type and with value a for each
fully specified type T in S′. If the output type is not fully specified, however, so-called “hypothetical
objects” will need to be constructed corresponding to the non-singleton types in S′. In such a case, the
type S′ is not guaranteed to have a witness — it is even possible that S′ is the empty type, leading to
logical inconsistency.

In this paper, rules have the form of well-typed functions. For example a rule f may be f = λr.b(r)
where r : A, b(r) : B with f : A→ B. The difference from Cooper’s work is that the rules in this paper
(1) specify type constraints in the rule types and (2) output records (generally: objects) rather than record
types (generally: types). One reason for doing things this way is that the rules are applied to records, and
if they also output records, then a sequence of updates can be seen as a simple threading of update rules
where the output of one rule is the input to the next. The potential disadvantage with rules producing
objects as output is that underspecified information states are more difficult to deal with.

7 Conclusions and future work

We hope that the proposed approach to dialogue management will enable one to bring significant ad-
vances from dialogue theory into the state-of-the-art of dialogue system development and design. It is
important to support important principles of interaction domain-independently, however our approach
does not constrain creation of domain-specific dialogue rules and strategies.

We are aiming at developing a hybrid system which: (a) maintains a rich information state, (b) has sets
of domain-independent and domain-dependent conversational rules and (c) will allow the assignment
of probabilities to rules and to the components of the information state and to train the probabilities
according to the new observations. In this sense our approach follows (Lison, 2015), which is based on
probabilistic rules.

We intend to develop a fully fledged spoken dialogue system on this basis that will enable it to support
theoretical notions similar to the ones developed in frameworks like KoS. Creating such an implemented
account of theoretical dialogue frameworks will enable researchers to test theories of dialogue and dis-
course and exhibit the results of their research to a broader public.

Acknowledgements

This research was supported by a grant from the Swedish Research Council for the establishment of the
Centre for Linguistic Theory and Studies in Probability (CLASP) at the University of Gothenburg. We
also acknowledge the support of the French Investissements d’Avenir-Labex EFL program (ANR-10-
LABX-0083). In addition, we would like to thank Robin Cooper and our anonymous reviewers for their
useful comments.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

References

James F Allen, Lenhart K Schubert, George Ferguson, Peter Heeman, Chung Hee Hwang, Tsuneaki
Kato, Marc Light, Nathaniel Martin, Bradford Miller, Massimo Poesio, et al. 1995. The TRAINS
project: A case study in building a conversational planning agent. Journal of Experimental & Theo-
retical Artificial Intelligence 7(1):7–48.

Nicholas Asher and Alex Lascarides. 2003. Logics of conversation. Cambridge University Press.

Johan Bos and Malte Gabsdil. 2000. First-order inference and the interpretation of questions and answers.
In Massimo Poesio and David Traum, editors, Proceedings of the Götalog, the 4th Workshop on the
Formal Semantics and Pragmatics of Dialogue, Götaborg.

Ellen Breitholtz. 2014. Reasoning with topoi–towards a rhetorical approach to non-monotonicity. In Pro-
ceedings of the 50th anniversary convention of the AISB, 1st–4th April 2014, Goldsmiths, University
of London.

Robin Cooper. 2005. Austinian truth, attitudes and type theory. Research on Language and Computation
3(4):333–362.

Robin Cooper. 2011. Copredication, quantification and frames. In Sylvain Pogodalla and Jean-Philippe
Prost, editors, Logical Aspects of Computational Linguistics (LACL 2011). Springer.

Robin Cooper. 2013. Clarification and generalized quantifiers. Dialogue and Discourse 4:125.

Robin Cooper. in prep. Type theory and language: From perception to linguistic communication.
https://sites.google.com/site/typetheorywithrecords/drafts.

Robin Cooper and Jonathan Ginzburg. 2012. Negative inquisitiveness and alternatives-based negation.
In Logic, Language and Meaning, Springer, pages 32–41.

Thierry Coquand, Yoshiki Kinoshita, Bengt Nordstrm, and Makoto Takeyama. 2009. A simple type-
theoretic language: Mini-TT .

Simon Dobnik and Robin Cooper. 2017. Interfacing language, spatial perception and cognition in type
theory with records. Journal of Language Modelling 5(2):273–301.

Arash Eshghi, Igor Shalyminov, and Oliver Lemon. 2017. Interactional dynamics and the emergence of
language games. In Proceedings of the ESSLLI 2017 workshop on Formal approaches to the Dynamics
of Linguistic Interaction. Barcelona.

Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. 2007. Classifying ellipsis in dialogue: A
machine learning approach. Computational Linguistics 33(3):397–427.

Jonathan Ginzburg. 1996. Interrogatives: Questions, facts and dialogue. The handbook of contemporary
semantic theory. Blackwell, Oxford pages 359–423.

Jonathan Ginzburg. 2012. The interactive stance. Oxford University Press.

Kristiina Jokinen. 2009. Constructive dialogue modelling: Speech interaction and rational agents, vol-
ume 10. John Wiley & Sons.

Staffan Larsson. 2002. Issue-based dialogue management. Department of Linguistics, Göteborg Univer-
sity.

Staffan Larsson and David R Traum. 2000. Information state and dialogue management in the TRINDI
dialogue move engine toolkit. Natural language engineering 6(3-4):323–340.

Pierre Lison. 2015. A hybrid approach to dialogue management based on probabilistic rules. Computer
Speech & Language 34(1):232–255.

Andy Lücking. 2016. Modeling co-verbal gesture perception in type theory with records. In Proceedings
of the 2016 Federated Conference on Computer Science and Information Systems. pages 383–392.

Paweł Łupkowski and Jonathan Ginzburg. 2017. Query responses. Journal of Language Modelling
4(2):245–292.



Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Massimo Poesio and David R Traum. 1997. Conversational actions and discourse situations. Computa-
tional intelligence 13(3):309–347.

M. Purver. 2006. CLARIE: Handling clarification requests in a dialogue system. Research on Language
& Computation 4(2):259–288.

Verena Rieser and Oliver Lemon. 2011. Reinforcement learning for adaptive dialogue systems: a data-
driven methodology for dialogue management and natural language generation. Springer Science &
Business Media.

Craige Roberts. 2012. Information structure: Towards an integrated formal theory of pragmatics. Se-
mantics and Pragmatics 5:6–1.

David Schlangen and Gabriel Skantze. 2009. A general, abstract model of incremental dialogue process-
ing. In Proceedings of the 12th Conference of the European Chapter of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, pages 710–718.

Jason D Williams, Kavosh Asadi, and Geoffrey Zweig. 2017. Hybrid code networks: practical and
efficient end-to-end dialog control with supervised and reinforcement learning. arXiv preprint
arXiv:1702.03274 .

Steve Young, Milica Gašić, Simon Keizer, François Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model: A practical framework for POMDP-based spoken
dialogue management. Computer Speech & Language 24(2):150–174.

A Supplemental Material: “Hello world!” example
Differences between the field values in si−1 and si are marked with an asterisk (*).

1. s0 = init =
[

private =
[

agenda = []
]

dgb =
[

moves = []
] ]

2. USER0> hello is interpreted by NLU as a move m0 =

 spkr = user0
addr = agent
content =

[
c=gs(spkr,addr)

]


3. s1 = integrateUserMove(s0,m0) =



private =
[

agenda = []
]

dgb =


moves* = [

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]
]

latestMove* =

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]






4. s2 = counterGreeting(s1) =



private =

 agenda* = [

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
 ]



dgb =


moves = [

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]
]

latestMove =

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]





5. State s2 has non-empty agenda, thus agenda’s content will be emitted and NLG will produce an utterance: AGENT>

Hello world!.

6. s3 = fulfilAgenda(s2) =

=



private =
[

agenda* = []
]

dgb =


moves* = [

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
,

spkr =user0
addr =agent
content=

[
c=gs(user0,agent)

]
]

latestMove* =

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]







