
Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Identifying, Classifying and Resolving Non-Sentential Utterances in
Customer Support Systems

Poulami Debnath
Accenture Labs
Bangalore, India

poulami.debnath
@accenture.com

Shubhashis Sengupta
Accenture Labs
Bangalore, India

shubhashis.sengupta
@accenture.com

Harshawardhan M. Wabgaonkar
Accenture Labs
Bangalore, India
h.wabgaonkar
@accenture.com

Abstract

Task-oriented virtual agents (VAs) are expected to interact with human users in a natural language
such as English and work with them to perform the users’ desired tasks. In order to respond to
the user or to carry out other actions, the VA needs to understand the meaning of the user utter-
ances. Since humans often utter (syntactically) incomplete sentences during conversations, the
VA needs to have the ability to comprehend such incomplete utterances - also known as Non
Sentential Utterances (NSU). In this work, we propose algorithms for the detection, classifica-
tion and resolution of such incomplete natural language utterances. Both rule-based as well as
machine-learned algorithms are proposed for NSU detection. The NSU classification algorithm
is machine-learning based. The output from the detection and classification tasks is used by a
heuristic algorithm for the NSU resolution task. Experimentations on and results of these algo-
rithms are presented and discussed for three different corpora (real-life human agent-user chats
from hospitality, retail and information-technology support areas) related to Customer Support
Representative domain.

1 Introduction

The onset of voice or chat-based assistants has created a need for building virtual agents that will be
able to carry out more natural conversations with humans. More specifically, we examine the domain
of Customer Support Representatives (CSR) that form an integral part of any business organization.
Great customer service and engagement drive business growth and popularity as discussed in a survey
(Sprinklr, 2017) and the use of chatbots or virtual agents is considered to be a way to achieve those
positive business outcomes (Gautam, 2017). A virtual agent that understands human utterances even in
their partial forms would make communication more natural.

The bot assistants available today (like Alexa or Siri) exhibit question-and-answering functionality,
being pre-trained with commands (Martin and Priest, 2017) in certain areas. As such the voice com-
mand systems do not have session handling capability of their own (Dart, 2017) and external skill-sets
have to be written to enable conversational capabilities. Handling all nuances of natural conversations,
specifically the NSUs, is yet to be seen in these systems.

A: as far as purchases, the sales department can help
you purchase it. However as soon as you purchase it we
can help you install it
B: excellent....

Example 1: Retail Transcript Snippet

A: We do also offer discounts for AAA members and
seniors 62 and over based on availability. If you would
qualify I can check for these rates as well.
B: AAA

Example 2: Hospitality Transcript Snippet

Examples 1 and 2 are transcript snippets from the customer service domains of retail and hospitality,
respectively. Speaker A depicts the human agent and B, the customer. In both examples, B’s response
is partially complete. The first instance is an exclamation by the customer whose intended expression is
to be understood by the agent. The second example is a response to agent’s context parameter (member-
ship type).

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Handling NSUs is critical to deriving the full semantic meaning of the conversation and recent neural
models such as sequence-to-sequence (Vinyals and Le, 2015) address only a few of these issues. We
discuss some prior work in section 2. We attempt the detection of partial utterances using both rule-
based as well as machine learning based approaches, followed by machine learning based approaches to
classify partial utterances, as described in section 3. The results are discussed in section 4. We discuss
our resolution approach in section 5 and conclude this paper in section 6.

2 Related Work

Non-sentential or elided utterances have been analyzed by researchers. A detection methodology for
verb phrase ellipsis using machine learning was presented by (Nielsen, 2004). (Pulman, 2000) discusses
a conditional equivalence mechanism of resolution between quasi-logic forms and their resolved logic
forms that cater to verb phrase elliptical occurrences. (Hardt and Rambow, 2001) examine the factors for
eliding verb phrases in text and present a trainable model.

(Fernández and Ginzburg, 2002) conducted a corpus-based study on some transcripts from the British
National Corpus (BNC) and presented a taxonomy of NSUs. A particular class- sluice, was extensively
studied by (Fernández et al., 2004). A machine learning classification for NSU types in dialog was
conducted by (Fernández et al., 2005) for the BNC corpus.

(Dragone, 2015) built on the classification work of (Fernández, 2006) by incorporating additional
features and a semi-supervised learning technique which resulted in an improvement in the classification
accuracy and also provided an approach to the probabilistic modeling of the dialog context. The author
reformulated the incomplete-sentence resolution rules from (Fernández et al., 2005) with a probabilistic
account of the dialog state.

(Schlangen, 2005) presented a machine learning based approach to identify fragmentary sentences and
their antecedents in a multi-party dialog. (Lin et al., 2016) presented an ellipsis and coreference module
in a virtual patient dialog system. (Raghu et al., 2015) proposed a rule-based approach to generate
resolved questions based on an input corpus of template reference questions and ranking the results.
Another approach was taken by (Kumar and Joshi, 2016) using an RNN based encoder-decoder network,
that would create the resolved utterance based on the incomplete utterance and its dialog context. They
trained sequence models for semantic as well as for syntactic patterns followed by building an ensemble
model.

3 Our Approach

3.1 Overall Architecture of the Spoken Dialog System
Figure 1 shows the overall architecture of our prototypical spoken dialog system, built mainly over
open source software. When a customer (Cust) utterance (utt) is received by the system, the constituent
blocks (Incoming Utterance Analyzer, Spoken Language Understanding Unit, Dialog Manager, Natural
Language Generator, Response Interface unit) work together to generate a response (resp) to utt. In this
paper, we only discuss the working of the Partial Utterance Analyzer (PUA) which is a sub-block of the
Spoken Language Understanding unit. The dotted box on the left-hand side of Figure 1 shows the flow of
the conversation timeline. ant refers to the antecedent, the immediately previous sentence uttered by the
system. The PUA is composed of three modules - the Detector, the Classifier and the Resolver modules.

3.2 Assumptions
We have made the following assumptions. First, the virtual agent would always converse in complete
sentences. Thus, we focus on resolving human partial utterances only. Second, the underlying method-
ology of this partial utterance analyzer module is meant to be applied to only dialog scenarios. These
have not been tested on other forms of text- like essays, interviews, or multi-party conversations.

3.3 Corpora: Corpus I for Detection and Corpus II for Classification
We have curated two sets of corpora of user utterances along with their immediate antecedent texts. The
first corpus, Corpus I, of size 1497 is used only for detection experiments. It contains both positive (637)

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Figure 1: Overall Architecture

and negative (860) occurrences of non-sentential user utterances. Our annotations of the target value is
either a yes / no, indicating the presence / absence of an NSU. The second corpus, Corpus II, of size 900
is used to train machine learning models for the classification of NSU categories. All user utterances in
this corpus, are therefore, of the non-sentential type.

For both corpora, we have taken real-life chat transcripts across the industry domains of hospitality,
retail and IT support. Hospitality transcripts include discussions around room booking, user profile
related issues and customer-rewards/offers. Chats in retail are mainly around product usage support,
replacement of defective items, and troubleshooting procedures. IT chat transcripts comprise discussions
around technical assistance, network troubleshooting and so on.

3.4 Advice Codes

We pre-define a catalog of advisory codes that give execution instructions to handle the incomplete
utterance. Our rule based detection algorithm additionally produces a response code along with the
expected yes/no evaluation, based on the rule that was triggered to arrive at the detection outcome. The
classifier module associates a specific advice code with each of the NSU classes. These advisory codes
are used by the Resolver module to understand the partial utterances and enable the VA to move the
conversation forward.

3.5 The Detector Module

We discuss both the rule-based and the machine-learning based approaches on Corpus I with 1497
records.

Rule Based Detection of Non-Sentential Utterances
The rule-based methodology presented in Algorithm 1 takes the inputs: utt (user utterance), ant (an-
tecedent) and dac utt (dialog act class 1 of utt). The detection outcome evaluated using a rule-engine
could be one of the following: yes (utt is non-sentential), no (utt is complete) or rule not found (utt
could not be covered by any of the rules). We’ve grouped the detection rules into multiple subroutines

1The Dialog Act Classifier (DAC) is one of the modules of our Spoken Language Understanding block and it predicts one
of the following acts for an utterance: G G (greeting), CAT (Confirmation Affirmation Turn), INFORMATION, COMMAND
or QUESTION. Other details related to DAC are out of the scope of this paper.

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

as shown in algorithms 1 - 9. aff, conn, greet, rej, sluice are pre-defined sets of affirmation words,
connective words, greeting words, rejection words and question words, respectively. The flag variables
fr beg and fr end indicate the presence of connective words at beginning and at the end of utterance,
respectively. av standalone indicates if an auxiliary verb has an associated main verb in utt. mv, nc
and noun pos respectively denote the extracted main verbs, noun chunks and noun pos tags from utt.
SVO structure represents the structure of utt, it could be VO (verb object), SV simple (subject verb in a
simple sentence) or SV compound (subject-verb in a compound sentence) or SVO (subject-verb-object).
Finally, tkn contains the word token count of utt. We formulated these rules by first analyzing the various
NSU utterances, starting with smaller utterances (single token) and iteratively visiting larger sentences
and also studying their dependency trees.

Machine Learning Based Detection of Non-Sentential Utterances

The machine learning based approach uses scikit’s (Pedregosa et al., 2011) Support Vector Machines for
model training with a linear kernel parameter. Given the user utterance, its antecedent and both their
dialog act classes, the feature computation process is automated. One of the features is the length type
of the utterance which could be either single (single token utterance), small (smaller number of tokens,
up to four tokens) or long (more than four tokens). Another feature is the type of the utterance structure
in terms of its subject-verb-object (SVO) components. The utterance’s PoS (Parts-of-speech) uni-grams
and bi-grams are used as another feature. The first two features are categorical, therefore we encode
them using LabelEncoder and OneHotEncoder. The third feature is of string type to which we apply
CountVectorizer. The train/test split ratio used is 80/20 for this experiment.

3.6 The Classifier Module

The classifier module’s function is to predict the class type of an NSU. The categorization of NSU classes
has been motivated from the taxonomy of (Fernández and Ginzburg, 2002). We analyzed the customer
service chat transcripts and based on the nature of our domain, merged a few of these into a single class.
On the other hand, we have ignored a few of the non-relevant ones. We have also added the classes
Verb Phrase Ellipsis (VPE) and Noun Phrase Ellipsis (NPE). We have used nine classes of NSUs in our
work: Ack (Acknowledgement), AffAns (Affirmation Answer), FragByConn (Fragments By Connec-
tives), NPE, PropModifier (Propositional Modifier), RejAns (Rejection Answer), Short Answer, Sluice
and VPE. Table 1 shows the description of these classes with examples where B’s utterances are non-
sentential (shown in italics). Specific advice codes are mapped to each of these individual classes that
later help with resolution.

As stated earlier, Corpus II is used for the classification experiments. The features used are listed in
Table 2a. Table 2b shows the distribution of the NSU classes in this corpus. All the features are computed
automatically out of which one is of string type and the rest are categorical. Encoders LabelEncoder
and OneHotEncoder are used for the latter type whereas uni-grams and bi-grams are computed for the
individual tokens and their corresponding PoS tags. The dataset is split into 80/20 train/test ratio. We
have trained two models– Support Vector Machines on a linear kernel and Random Forests with 4000
trees using scikit-learn (Pedregosa et al., 2011), on this data and using these features.

4 Results

4.1 Detection Results

Table 3a summarizes the results of rule-based detection algorithm on Corpus I under column name
Combined. For comparing the efficiency of the detection algorithm across domains, we also present
the individual results for Hospitality, Retail and IT support. We observe that the coverage of these rules
is quite high, at least 91%. The accuracy measures around 88%, with the precision, recall and f1 scores
hovering around 0.85 for the combined dataset. Table 3b shows the metrics of the ML based detection
approach. The average precision, recall and f1 scores are 0.82 which are slightly lesser than the rule-
based approach.

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Input: (utt, ant, dac utt)
Output: detection output
Result: Partial Utterance Detection Outcome
res = Call Sub 1 ()
if res != empty then

return res
if tkn == 1 then

Call Sub 2 ()
if tkn in {2,3,4} and nc == empty and mv ==

empty then
Call Sub 3 ()

if tkn >1 and mv is empty and noun pos is empty
then

if regex((PROPN(CCONJ(PROPN))*)+) ==
True or regex((((NUM)*)((PROPN)*))+)
== True then

return yes
if tkn >4 or (tkn in {2,3,4} and either nc or mv is

non-empty) then
Sub 4 ()

if utt contains sluice text and verb is missing then
return yes

if utt has verb missing then
return yes

return ”rule not found”
Algorithm 1: Detection Algorithm

Input: (utt)
Output: detection output
if utt in greet and utt in {aff, rej} then

return yes
if utt in conn and (fr beg == True or fr end ==

True) then
return yes

if utt in greet then
return no

if utt has av standalone then
return yes

Algorithm 2: Sub 1

Input: (utt, dac utt)
Output: detection output
if utt in {aff, rej, sluice} then

return yes
if utt in greet then

return no
if dac utt == ”CAT” then

return yes
if pos utt in {”ADV”, ”ADP”, ”PROPN”,

”NOUN”, ”INTJ”, ”VERB”, ”NOUN”} then
return yes

Algorithm 3: Sub 2

Input: (utt, dac utt)
Output: detection output
if utt in greet then

return no
if utt in {aff, rej, sluice} then

return yes
if dac utt == ”CAT” then

return yes
Algorithm 4: Sub 3

Input: (utt)
Output: detection output
if utt has VO then

Sub 4.1 ()
if utt has SV simple then

Sub 4.2 ()
if utt has SV compound then

Sub 4.3 ()
if utt has SVO then

Sub 4.4 ()
Algorithm 5: Sub 4

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if dac utt == ”COMMAND” then

return no
else if dac utt == ”QUESTION” then

return yes
Algorithm 6: Sub 4.1

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if helping verb(utt) == True then

return yes
if helping verb(utt) == False and (

acomp(verb,ADJ) == True or
advmod(verb,ADV) == True) then

return no
if helping verb(utt) == False and xcomp(verb,-)

== True then
return yes

Algorithm 7: Sub 4.2

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if (nsubj(verb1,-) == True or nsubjpass(verb1,-)

== True) and acomp(verb2, ADJ) then
return no

if (nsubj(verb1,-) == True or nsubjpass(verb1,-)
== True) and advmod(verb2, ADV) then

return yes
if (nsubj(verb1,-) == True or nsubjpass(verb1,-)

== True) and attr(verb2, nounphrase) then
return no

Algorithm 8: Sub 4.3

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
else

return no
Algorithm 9: Sub 4.4

We have adopted the rule-based detection in our prototype implementation because of two main rea-
sons: Advisory codes produced by rule algorithm give additional information that which rule was trig-
gered to arrive at the conclusion, this is not available in the ML approach. For example, information
about the occurrence of fragment words at either the beginning or at the end of an utterance could be
obtained by rules; while the ML approach only yields a binary outcome (yes / no). This information
becomes valuable during resolution. Second, the resultant metrics are a little better for the rule approach

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

than that of the ML one. An auxiliary benefit of using rules is that they give an insight into the cover-
age efficiency of the rule-set. This could further help us in identifying linguistic heuristics to improve
coverage, such as adding domain-specific data matches for ticket reference numbers, log data, etc.

NSU Class Name Description Example
Ack

(Acknowledgement) user acknowledgement to antecedent A: I will run a scan for errors.
B: ok

AffAns
(Affirmation Answer) user confirming acceptance of antecedent A: Would you like to get us started?

B: yes please
FragByConn

(Fragments by Connectives)
usage of fragments (but, and, or, as well as)

at the beginning or at the end of utt
A: Please try to enter your password into the other box.

B: I don’t know and
NPE

(Noun Phrase Ellipsis) noun part being omitted in utt A: What specific symptoms are you having?
B: breaks up

PropModifier
(Propositional Modifier)

exclamations using adjectives,
adverbial words

A: Average wait time is 2-32 minutes
B: excellent

RejAns
(Rejection Answer) utt expressing rejection of antecedent A: Is the forecast lost?

B: no

Short Answer utt containing just the answer values A: What type of computer do you currently have?
B: Microsoft Surface Pro 4

Sluice questions in incomplete forms A: Can you clear your cache?
B: how?

VPE
(Verb Phrase Ellipsis) verb part being omitted in utt

A: Have you tried using another browser like
Google Chrome to do the printout??

B: no I haven’t

Table 1: NSU class description with examples from customer chat transcripts (A: Agent, B: Customer)

Feature Description
wh presence of wh-word in utt
aff presence of affirmation word in utt
rej presence of rejection word in utt

ack presence of acknowledgement in utt
frag presence of fragment words in utt

grams pos and word n-grams of utt, n in (1,2)
utt dac DAC class of utterance
ant dac DAC class of antecedent

len if length of utterance is single, short or long
svo subject-verb-object structure of utt

noun presence of noun in utt
mv presence of main verb in utt

av mv auxiliary verb in utt having an associated main verb in utt
single token type type of utt if it consists of only one word

firstword type of first word in utt

(a) Feature Set

Class Type Count
Ack 93

AffAns 140
FragByConn 79

NPE 87
PropModifier 41

RejAns 77
ShortAnswer 210

Sluice 56
VPE 117

Total 900

(b) Class Distribution

Table 2: Set of features and class distribution of the classification corpus

4.2 Results of Partial Utterance Classification

Tables 4a and 4b show the classification reports of the models trained using SVM and using RF. Both
show similar average results for the precision, recall and f1 parameters. Short Answer type that had
maximum count in class distribution showed good recall values in SVM (0.93) and RF (0.88) models.
All classes except NPE and VPE show good precision values in SVM. The limited and similar type of
data points of NPE could be the reason for its bad performance. The Random Forest classifier shows
high precision for Sluices (1.00) and Affirmative Answers (0.96). Please note that the corpora references
can be given upon request.

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

Parameter Hospitality Retail IT Combined
Dataset Size 493 498 506 1497

Coverage 96.35% 91.77% 92.29 93.45%
Accuracy 89.68% 87.75% 86.94% 88.06%
Precision 0.8457 0.8778 0.8028 0.8417

Recall 0.8509 0.8700 0.9067 0.8752
f1 0.8483 0.8739 0.8516 0.8581

(a) Rule-Based Detection Approach

Precision Recall F1
no 0.85 0.85 0.85
yes 0.77 0.77 0.77

avg / total 0.82 0.82 0.82
(b) Machine Learning based Detection Ap-
proach using Support Vector Machines

Table 3: Results of Partial Utterance Detection

5 The Resolver Module

5.1 Defining Resolution in Customer-Support Chat Scenarios

The aim of resolving an NSU in a goal-oriented conversation is to enable the agent to understand its
intended meaning and progress the conversation accordingly. It may not always necessarily mean re-
constructing the utterance. With this understanding, we’ve designed the resolver module to interact with
some of the other components of our system- namely the dialog manager that helps with a meaningful
conversation flow; it also consists of a dialog state tracker (keeps track of state variables in a conversa-
tion), and a policy manager (decides on strategies like grounding, confirmation questions, taking turns).
As discussed earlier, outcomes from the rule-based detector and classifier modules guide the resolver to
handle the partial utterance.

Precision Recall F1
Ack 0.91 0.91 0.91

AffAns 0.85 0.81 0.83
FragByConn 0.73 0.62 0.67

NPE 0.55 0.69 0.61
PropModifier 0.82 0.64 0.72

RejAns 0.82 0.93 0.87
ShortAnswer 0.89 0.93 0.91

Sluice 1.00 0.70 0.82
VPE 0.67 0.70 0.68

avg / total 0.81 0.81 0.81
(a) Classification Results for SVM

Precision Recall F1
Ack 0.87 0.91 0.89

AffAns 0.96 0.85 0.90
FragByConn 0.69 0.69 0.69

NPE 0.64 0.88 0.74
PropModifier 0.69 0.64 0.67

RejAns 0.76 0.87 0.81
ShortAnswer 0.83 0.88 0.85

Sluice 1.00 0.60 0.75
VPE 0.75 0.60 0.67

avg / total 0.81 0.80 0.80
(b) Classification Results for Random Forests

Table 4: Classification Results

5.2 The resolve Function

We formulate the following function in order to resolve non-sentential utterances in a goal-oriented
conversation:

resolve(getCODE(obj), getCTXT (obj.utt), getCTXT (obj.ant), statevar, turn flag) (1)

A dialog object obj includes the user NSU (obj.utt) and its antecedent (obj.ant). The resolve func-
tion consists of the sub-functions getCODE() and getCTXT(), and parameters statevar and turn flag.
getCODE() retrieves and merges the advisory codes from the detector and the classifier modules. getC-
TXT() retrieves the context variables at the current dialog level. These may include specific slot values or
even actionable items. The context information is retrieved for both obj.utt and obj.ant, as shown by the
second and third parameters of the resolve function. statevar is the set of all state variables at the entire
conversation level. turn flag indicates the next turn taker- 0 implies system’s turn, 1 implies user’s turn.
We describe the resolution steps through algorithms 10 through 12. The output of the resolve function is
a series of suggested execution steps based on the advisory code.

Here, we show the code values as the NSU class names. Some supplementary systems are used, e.g.
sentiment analyzer, question answering(Gupta et al., 2018). We associate conf flags (confirmation flags)

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

for all variables and a confirmation by the user sets the associated flags to 1. The function isAdditional-
Text() (Algorithm 11) takes checks if there is additional text present in the utterance text other than the
pre-defined sets of Ack/ AffAns/ RejAns. Algorithm 12 sets the value of turn flag.

Input: resolve(code, obj.utt, obj.ant, statevar, turn flag)
Output: resolution steps based on NSU class code
if code in ”Ack”, ”AffAns”, ”RejAns” then

if code is ”Ack” or ”AffAns” then
set conf flags to 1

else
set conf flags to 0

if isAdditionalText(code, obj.utt) == yes then
update context vars in obj

if code == ”PropModifier” then
Compute Sentiment and Emotion scores
Invoke Policy Mgr to generate apt response

if code == ”Short Answer” then
Assign context var of obj.ant with obj.utt

if code == ”Sluice” then
Invoke Question Answering system to get answer

if code in ”FragByConn beg”, ”FragByConn End then
if ”beg” in code then

reconstruct obj.utt by appending obj.utt to obj.ant
if ”end” in code then

wait for user to enter further input text
if code == ”NPE” then

retrieve noun phrases from obj.ant
ask user confirmation based on policy manager

if code == ”VPE” then
retrieve action verbs from obj.ant
ask user confirmation based on policy manager

update statevar; set turn flag(code)
Algorithm 10: Resolution

Input: isAdditionalText(code, text)
Output: Checking for additional data
if code == ”Ack” then

Check token count in text after
removing words from Ack set

if code == ”AffAns” then
Check token count in text after

removing words from Aff set
if code == ”RejAns” then

Check token count in text after
removing words from Rej set

if token count == 0 then
return no

else
return yes

Algorithm 11: Checking Addi-
tional Text

Input: set turn flag (code)
Output: Setting turn flag
if code in ”Ack”, ”PropModifier”

then
turn flag = 0

if code in ”FragByConn End” then
turn flag = 1

Algorithm 12: Setting turn flag

User’s response excellent in example 1 is a PropModifier, the resolver would check the sentiment and
emotion scores and invoke the policy manager to generate a response. In example 2, user utterance is
Short Answer that would update the antecedent context variable membership type.

6 Conclusion

We present a Partial Utterance Analyzer that detects, classifies and resolves non-sentential utterances
for human-BOT conversations for customer services. We discuss a rule-based and a machine learn-
ing approach for detection. For classification, we show machine learning models. Resolution involves
executing instructions from advices codes that are generated by the rule-based detection and the clas-
sification modules. Results of detection and classification are fairly good, considering the open-ended
and practical nature of the data. The corpora have been curated from real-life chat transcripts across
hospitality, retail and information technology support areas.

There isn’t a way of directly comparing our work with those of the earlier approaches, primarily
because of the nature of the data (real-life chats) and the nature of the domain (goal-oriented customer
service chats). There are no corpus-specific constructs (e.g. has pause) or embedded data (like C5 tags)
as were there in the BNC corpus. We have refurbished the set of NSU class types from what is described
in earlier work by merging some of the classes, adding new ones and leaving out a few that don’t seem
to attach any relevance in a chat-bot framework. Our resolution approach is tied to advice codes that
the dialog manager architecture supports with its functionality, whereas earlier approaches were mainly
around reconstructing sentences, thus making comparison a tricky process.

Our current work is integrated in a prototypical framework called OpenDial (Lison, 2015), which is a
Java toolkit for developing spoken dialog systems using a probabilistic-rules formalism. As we deploy
our framework in practice, our future work will focus on a detailed analysis of the performance of the
algorithms by testing them with more data across CSR domains as well as on social chat-bot scenario,
and on improving the robustness of the algorithms. We also wish to explore the transitioning towards
automatic rule induction, and inclusion of deep learning techniques at various stages of the algorithms.

Proceedings of the 22nd Workshop on the Semantics and Pragmatics of Dialogue, November 8-10, 2018, Aix-en-Provence, France.

References
Scott Dart. 2017. Tips on state management at three different levels @MISC, May.

Paolo Dragone. 2015. Non-sentential utterances in dialogue: Experiments in classification and interpretation.
CoRR, abs/1511.06995.

Raquel Fernández and Jonathan Ginzburg. 2002. Non-sentential utterances in dialogue: A corpus-based study. In
Proceedings of the 3rd SIGdial Workshop on Discourse and Dialogue - Volume 2, SIGDIAL ’02, pages 15–26,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. 2004. Classifying ellipsis in dialogue: A machine
learning approach. In Proceedings of the 20th International Conference on Computational Linguistics, COL-
ING ’04, Stroudsburg, PA, USA. Association for Computational Linguistics.

Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. 2005. Using machine learning for non-sentential
utterance classification.

Raquel Fernández. 2006. Non-sentential Utterances in Dialogue: Classification, Resolution and Use. Ph.D.
thesis, King’s College London.

Nitish Gautam. 2017. Customer service chatbot - using chatbots for customer service and customer support
@MISC, October.

Deepak Gupta, Rajkumar Pujari, Asif Ekbal, Pushpak Bhattacharyya, Anutosh Maitra, Tom Jain, and Shubhashis
Sengupta. 2018. Can taxonomy help? improving semantic question matching using question taxonomy. In
Proceedings of the 27th International Conference on Computational Linguistics, pages 499–513. Association
for Computational Linguistics.

Daniel Hardt and Owen Rambow. 2001. Generation of vp ellipsis: A corpus-based approach. In Proceedings of
the 39th Annual Meeting on Association for Computational Linguistics, ACL ’01, pages 290–297, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Vineet Kumar and Sachindra Joshi. 2016. Non-sentential question resolution using sequence to sequence learn-
ing. In Nicoletta Calzolari, Yuji Matsumoto, and Rashmi Prasad, editors, COLING 2016, 26th International
Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, December 11-16,
2016, Osaka, Japan, pages 2022–2031. ACL.

Chuan-Jie Lin, Chien-Wei Pao, Yen-Heng Chen, Chi-Ting Liu, and Hui-Huang Hsu. 2016. Ellipsis and corefer-
ence resolution in a computerized virtual patient dialogue system. 40, 09.

Pierre Lison. 2015. Developing spoken dialogue systems with the opendial toolkit. In Proceedings of the 19th
Workshop on the Semantics and Pragmatics of Dialogue. Goteborg.

Taylor Martin and David Priest. 2017. The complete list of alexa commands so far @MISC, December.

Leif Arda Nielsen. 2004. Verb phrase ellipsis detection using automatically parsed text. In Proceedings of the 20th
International Conference on Computational Linguistics, COLING ’04, Stroudsburg, PA, USA. Association for
Computational Linguistics.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Stephen G. Pulman. 2000. Bidirectional contextual resolution. Comput. Linguist., 26(4):497–537, December.

Dinesh Raghu, Sathish Indurthi, Jitendra Ajmera, and Sachindra Joshi. 2015. A statistical approach for non-
sentential utterance resolution for interactive QA system. In Proceedings of the SIGDIAL 2015 Conference, The
16th Annual Meeting of the Special Interest Group on Discourse and Dialogue, 2-4 September 2015, Prague,
Czech Republic, pages 335–343. The Association for Computer Linguistics.

David Schlangen. 2005. Towards finding and fixing fragments: Using ml to identify non-sentential utterances
and their antecedents in multi-party dialogue. In Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, ACL ’05, pages 247–254, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Sprinklr. 2017. 4 lessons for delivering effective social customer care @MISC.

Oriol Vinyals and Quoc V. Le. 2015. A neural conversational model. CoRR, abs/1506.05869.

