
Proceedings of the 21st Workshop on the Semantics and Pragmatics of Dialogue, August 15-17, 2017, Saarbrücken, Germany.

Dialogue Act Semantic Representation and Classification Using
Recurrent Neural Networks

Pinelopi Papalampidi Elias Iosif Alexandros Potamianos
School of E.C.E., National Technical University of Athens, 15773 Athens, Greece

{el12003, iosife, potam}@central.ntua.gr

Abstract

In this work, we present a model that
incorporates Dialogue Act (DA) seman-
tics in the framework of Recurrent Neural
Networks (RNNs) for DA classification.
Specifically, we propose a novel scheme
for automatically encoding DA semantics
via the extraction of salient keywords that
are representative of the DA tags. The pro-
posed model is applied to the Switchboard
corpus and achieves 1.7% (absolute) im-
provement in classification accuracy with
respect to the baseline model. We demon-
strate that the addition of discourse-level
features enhances the DA classification as
well as makes the algorithm more robust:
the proposed model does not require the
preprocessing of dialogue transcriptions.

1 Introduction

Dialogue Act (DA) classification constitutes a ma-
jor processing step in Spoken Dialogue Systems
(SDS) assisting the understanding of user input.
Typically, this is implemented as the assignment
of tags to user utterances that (lexically) describe
the respective acts. DAs can be regarded as the
minimal units of linguistic communication that are
directly connected with the speaker’s communica-
tive intentions (Searle, 1969). The output of DA
classification can be exploited by other SDS com-
ponents including the modules of natural language
understanding and dialogue management.

Various approaches have been used for DA
classification including Bayesian Networks (BN),
Hidden Markov Models (HMM) (Stolcke et al.,
2000), feed-forward Neural Networks (Ji et al.,
2016), Decision Trees (Ang et al., 2005) and Sup-
port Vector Machines (SVM) (Fernandez and Pi-
card, 2002). The majority of these approaches

examined both the utterance meaning as well as
the sequence of the utterances within the dia-
logue. Recently, Deep Neural Networks (DNNs)
have been utilized for dialogue act classification
(Kalchbrenner and Blunsom, 2013; Lee and Der-
noncourt, 2016; Khanpour et al., 2016; Ji et al.,
2016) providing a significant increase in classi-
fication accuracy in task-independent conversa-
tions.

A challenge in the area of DA classification
is the construction of models that are domain-
agnostic and perform well across different gran-
ularities (coarse- vs. fine-grained) of DA tags. In
recent deep learning approaches (e.g., (Kalchbren-
ner and Blunsom, 2013; Khanpour et al., 2016;
Lee and Dernoncourt, 2016)) DNNs rely on word
embeddings that are generic or randomly set, ig-
noring domain-specific semantics. In (Lee and
Dernoncourt, 2016), the performance of DA sys-
tems using various domain generic word embed-
ding schemes was investigated and it was shown
that performance depends on the granularity of DA
tags.

In this work, we address the incorporation of
DA-specific semantics in the framework of RNNs.
Specifically, we propose a novel scheme for the
automatic encoding of DA semantics via the ex-
traction of a set of semantically salient keywords.
Those keywords can be regarded as members of
semantic subspaces that correspond to the respec-
tive DA. The importance of such keywords being
relative to each DA is estimated by a regression
model that exploits word embeddings. The clas-
sification of an unknown utterance relies on the
computation of semantic similarity scores between
the utterance words and the aforementioned DA
subspaces, which are given as features in the used
DNN in addition to typical word embeddings.

The rest paper is organized as follows. In Sec-
tion 2, the prior work is presented. In Section 3,
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both the baseline model (Khanpour et al., 2016;
Lee and Dernoncourt, 2016) and the proposed
model are described. In Section 4, the experimen-
tal dataset as well as the used DA tags are pre-
sented. The experimental setup and the related pa-
rameters are provided in Section 5, while the eval-
uation results are presented in Section 6. Section
7 concludes this work.

2 Related Work

The early approaches of DA classification took ad-
vantage of lexical information, syntax, semantics,
prosody, and dialogue history with manual extrac-
tion of the features (Qadir and Riloff, 2011; Stol-
cke et al., 2000; Jurafsky et al., 1997b; Klaus et
al., 1997; Kim et al., 2010; Novielli and Strap-
parava, 2013). Qadir and Riloff (2011) built
speech act classifiers in message board posts uti-
lizing lexical, syntactic and semantic features by
creating fixed, topic specific lexicons with key-
words. Stolcke et al. (2000) exploited lexical, col-
locational and prosodic cues, extracted from dia-
logues, in combination with discourse information
of the DA sequence. The reported model is a Hid-
den Markov Model (HMM), where each HMM
state corresponds to a sequential DA, achieving
classification accuracy of 71.0% when applied to
the Switchboard-DAMSL corpus (Jurafsky et al.,
1997a). Novielli and Strapparava (2013) exam-
ined the role of affective analysis through affec-
tive lexicons in the recognition of DAs. In terms
of affective text analysis, semantic features have
been extracted based on the distributional seman-
tic models built by Malandrakis et al. (2013).

Recently, the evolution of deep learning allowed
the implementation of different models of DNNs
in NLP, including the dialogue act classification.
Kalchbrenner and Blunsom (2013) used a mix-
ture of Convolutional Neural Networks (CNNs)
as a sentence model for the extraction of features
from each utterance and Recurrent Neural Net-
works (RNNs) as a discourse model for the extrac-
tion of information about the sequence of the DA.
This work improved the state-of-the-art DA clas-
sification on Switchboard-DAMSL corpus, reach-
ing 73.9% accuracy. Lee and Dernoncourt (2016)
built a model based on RNN and CNN that incor-
porates the preceding utterances via a two-layer
feedforward Artificial Neural Network (ANN) for
the extraction of discourse information. Ji et al.
(2016) proposed a hybrid architecture that com-

bines an RNN sentence model with discourse in-
formation about the relation between two sequen-
tial utterances in the form of a latent variable.
When the likelihood of the discourse relations de-
rived from the model is maximized, treating the
sentence model as a collateral factor in DA classi-
fication, an accuracy of 77.0% is achieved. Khan-
pour et al. (2016) employed a deep Long Short
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) structure with pre-trained word em-
beddings, and reported a classification accuracy of
80.1% outperforming the state-of-the-art.

For testing the various models suggested for
DA classification accuracy, a variety of annota-
tion schemes as well as datasets have been utilized
(Jurafsky et al., 1997a; Ang et al., 2005; Kim et
al., 2015; Henderson et al., 2014). Jurafsky et
al. (1997a) provided a dataset annotated with 42
DA tags according to the Dialog Act Markup in
Several Layers (DAMSL) (Allen and Core, 1997)
annotation scheme. Ang et al. (2005) proposed
an annotation scheme of five classes based on the
MRDA corpus. However, efforts are made in order
to develop a DA annotation scheme that is task-
independent and can be used by automatic annota-
tion methods (Bunt et al., 2012; Bunt et al., 2010;
Bunt et al., 2017). Nevertheless, there are still
limited data annotated based on the principles of
these schemes, such as ISO standard 24617-2 and
DIT++ (Bunt et al., 2012; Bunt et al., 2010).

3 Proposed Model

The two parts that constitute the proposed model
are depicted in Figure 1. The first part (sentence
model) creates a vector representation of the utter-
ance based on the LSTM structure suggested by
Lei et al. (2015a) and also used by Khanpour et
al. (2016). The sentence model uses word embed-
dings for the similarity computation between the
constituent words of utterances and DA tags. This
model is detailed in Section 3.1. The second part
is a discourse model that classifies the current ut-
terance based on its representation as well as the
representations of the preceding ones as proposed
by Lee and Dernoncourt (2016). The discourse
model is detailed in Section 3.2. To the baseline
model we add the semantic representation of the
DA tags.
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Figure 1: Overview of the proposed model.

3.1 Sentence Model

The proposed sentence model is an extension of
the baseline sentence model with DA-specific se-
mantic features as illustrated in Figure 1. The
baseline sentence model and the proposed ap-
proach of semantic features extraction are de-
scribed next.

Baseline Sentence Model
The baseline sentence model is depicted in Fig-
ure 2. Given an utterance that contains l words,
the model converts it into a sequence of l d-
dimensional word vectorsX1, X2, ..., Xl. This se-
quence is given as input to the LSTM network that
produces a m-dimensional vector representation
s of the utterance. LSTM is a variant of RNN
that has the benefit of preserving long-distance
dependencies between words and distilling unim-
portant words from the cell gate through its for-
get gate layer. In particular, given a sequence
X1, X2, ..., Xt, ..., Xl of word vectors, for the tth

word vector Xt, with inputs ht−1 and ct−1, ht
and ct are computed as follows (Hochreiter and
Schmidhuber, 1997):

it = σ(Wixt + Uiht−1 + bi), (1)

ft = σ(Wfxt + Ufht−1 + bf ), (2)

ot = σ(Woxt + Uoht−1 + bo), (3)

ut = tanh(Wuxt + Uuht−1 + bu), (4)

ct = ft � ct−1 + it � ut, (5)

ht = ot � tanh(ct), (6)

where Wj ∈ <d×d, Uj ∈ <d×m for j ∈
{i, f, o, u} are weight matrices, bj ∈ <d are bias
vectors and σ(·) is the element-wise signoid func-
tion, tanh(·) is the hyperbolic tangent function
and � is the element-wise multiplication.

In the pooling layer, all h1, h2, ..., ht vectors
that have been computed are combined for the
generation of a single vector that represents the
utterance. The combination of the h vectors can
be produced by applying any of the following
schemes: max-pooling, mean-pooling and last-
pooling. Max-pooling keeps the element-wise
maximum of the h vectors, mean-pooling averages
the h vectors and last-pooling keeps the last h vec-
tor, namely the ht vector. In order to obtain longer
dependencies between the utterance words, two
LSTM cells are stacked as proposed by Graves et
al. (2013) and Sutskever et al. (2014). Therefore,
the sentence model has two hidden layers.

DA Representation
The typical word embeddings that constitute the
input of the sentence model, does not directly
model the semantic information about the relation
between each utterance word w and each DA tag.
Here, we present a semantic model that automati-
cally extracts the domain-specific semantics of w.
Specifically, the semantic model computes the se-
mantic similarity between w and each DA. The
first step towards calculating semantic similarity
between w and each one of the DAs, is the selec-
tion of keywords that are representative of the con-
text of the DA tags as described in the following
paragraph.

Keyword Selection. In order to automatically
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Figure 2: Overview of the baseline sentence model for representing utterance s.
1 1 · · · 1
1 d(k1, w1)s̄(k1, ti) · · · d(kN , w1)s̄(kN , ti)
...

...
. . .

...
1 d(k1, wK)s̄(k1, ti) · · · d(kN , wK)s̄(kN , ti)

 ·

ai0
ai1
...
aiN

 =


1

s̄(w1, ti)
...

s̄(wK , ti)

 (7)

determine the keywords that are representative of
the DAs, we use the following measurements:

1. Saliency of w, that measures the information
content of w in respect to a specific task (DA
in this case), as proposed by Gorin (1996):

L(w) =
T∑
i=1

p(ti|w)log
p(ti|w)

p(ti)
, (8)

where L(w) is the saliency of w, T is the
number of DA tags, p(ti|w) is the probabil-
ity of the ith DA ti given w, and p(ti) is the
probability of the ith DA ti,

2. Frequency of w, denoted as f(w),

3. maximum probability of a DA tag given w
(maxT

i=1 p(ti|w)), where ti is the ith DA.

The keyword extraction is then based on thresh-
olds (see Section 5.1) applied to the product of
the saliency of w and its frequency (S(w)f(w))
and to the maximum probability of a DA given w
(maxT

i=1 p(ti|w)).
Semantic Model. After determining the key-

words, the semantic similarity betweenw and each
DA is computed as follows:

s(w, ti) =
N∑
j=1

aij
p(ti|kj)p(kj)

p(ti)
d(kj , w) , (9)

where s(w, ti) is the semantic similarity be-
tween w and the ith DA ti normalized in range 0 to
1, N is the total number of keywords and aij are
the weights assigned to each keyword kj for every
DA ti which are computed according to (7) for ev-
ery i ∈ [1, T ]. p(ti|kj) is the probability of the ith

DA ti given the keyword kj , p(ti) is the probabil-
ity of the ith DA ti, p(kj) is the probability of the
keyword kj ,

p(ti|kj)p(kj)
p(ti)

= p(kj |ti) is the proba-
bility of being keyword kj representative of the ith

DA ti, normalized in the range 0 to 1 and d(kj , w)
is the cosine similarity between the vectors of w
and the keyword kj .
In (7) where the a weights are calculated, K is the
size of the dialogue vocabulary and s̄(wk, ti) is the
estimated semantic similarity between wk and the
ith DA ti. s̄(wk, ti) is computed by applying (9)
and setting the a weights equal to 1.

3.2 Discourse Model
The discourse model is depicted in Figure 3. Let si
be the vector representation of the ith utterance of
the dialogue computed from the sentence model.
The sequence si−2, si−1, si is used as input to a
two-layer feedforward ANN. The goal of the dis-
course model is to predict the DA of the ith utter-
ance (zi ∈ <T ). The output of the first layer of the
ANN is computed as follows:

yi = tanh(

2∑
d=0

W−dsi−d + b1), (10)
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Figure 3: Overview of the discourse model that
predicts the DA zi of utterance si.

where W0,W−1,W−2 ∈ <T×m are the weight
matrices, b1 ∈ <T is the bias vector, yi ∈ <T

is the DA representation of the si utterance, and T
is the number of DAs.

Next, the input of the second layer of the ANN
is the vector representation yi provided by the first
layer. The final output of the network is the pre-
diction of the DA for the utterance si computed as
follows:

zi = softmax(U0yi + b2), (11)

where U0 ∈ <T×T and b2 ∈ <T are the weight
matrices and bias vector, respectively. For the dis-
course model, history size of two previous utter-
ances is used for the first layer and no history is
taken into account for the second layer as recom-
mended by Lee and Dernoncourt (2016).

4 Experimental Dataset

The dataset used is the Switchboard-DAMSL
dataset (Jurafsky et al., 1997a), which is anno-
tated with the 42 DAMSL tags. The Switchboard
corpus was originally used for training and test-
ing various speech processing algorithms. Also, it
has been used for other tasks such as Automatic
Speech Recognition (ASR) (Iyer et al., 1997) and
acoustic model adaptation (Povey et al., 2003),
including the modeling of DAs (Jurafsky et al.,
1997b). This dataset is split into training and test
subsets as proposed by Stolcke et al. (2000). The
training set comprises of 1,155 dialogues (199,050
utterances) and the test set of 19 dialogues (3,927
utterances) collected over the phone from 500 dif-
ferent speakers. The word-by-word transcriptions
are also provided. The topic of discussion between
two speakers is introduced by a computer-driven
robot agent and the conversation that follows is

recorded. About 70 casual topics were introduced.
In Table 1, the length of the dialogues (in terms
of number of utterances) included in the dataset is
presented. A development set was created by ran-

# of Utterances
per dialogue Train set Test set

min value 92 187
max value 954 679
mean value 334.6 410.0

Table 1: Switchboard-DAMSL corpus.

domly selecting 115 dialogues (13,192 utterances)
from the training set.

In Table 2, representative examples of the eight
most frequent DAs are presented. Furthermore,
the distribution of the DAs over the dataset is re-
ported in Table 3. As shown in this table, the most
frequent DA is the “Statement-non-opinion”.

No preprocessing, including tools for stripping
the punctuation and changing the capitalization, is
applied to the dataset. For the experiments that
follow classification accuracy is used as evaluation
measurement.

DA tag Example
Statement-non-
opinion

There’s no one else
that works there.

Acknowledge
(Backchannel)

Sure.

Statement-opinion
but I think its
relevance is pretty
limited.

Agree/Accept That’s right.
Abandoned or
Turn-Exit

Do you,-

Appreciation Well good.

Yes-No-Question
So do you have a
family too?

Non-verbal <Laughter>.

Table 2: Examples of the most frequent DAs.

5 Parameter Tuning

In this point, we describe the process for select-
ing the keywords of the semantic model (see Sec-
tion 5.1) and the tuning of the hyperparameters of
the LSTM baseline model (see Section 5.2). For
tuning we used the development set mentioned in
Section 4.
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DA tag Train set Test set
(%) (%)

Statement-non-
opinion

36.9 31.5

Acknowledge
(Backchannel)

18.8 18.2

Statement-
opinion

12.7 17.1

Agree/Accept 7.6 8.6
Abandoned or
Turn-Exit

5.5 5.0

Appreciation 2.3 2.2
Yes-No-
Question

2.3 2.0

Non-verbal 1.7 1.9
Remaining DAs 12.2 13.5

Table 3: Relative frequency (%) of the DAs.

5.1 Keyword Selection

For the selection of the keywords, classification
accuracy is calculated when different thresholds to
the metrics described in Section 3.1 are applied.
The best performance is achieved when 323 key-
words are selected (for S(w)f(w) = 200 and
maxT

i=1 p(ti|w) = 0.5). Indicative examples of
the selected keywords for the most frequent DAs
are presented in Table 4.

DA tag Selected keywords

Statement-non-
opinion

want, can’t, work, mine,
decided, always,
remember

Acknowledge
(Backchannel)

huh-uh, huh, yeah, yep,
what?, huh?

Statement-
opinion

seem, think, scary, ought,
worse, difficult

Agree/Accept true, agree, yes
Abandoned or
Turn-Exit

–, -/, -

Appreciation gosh, dear, wow, kidding
Yes-No-
Question

mean?, there?, then?, all?

Non-verbal
<Laughter>, <Noise>,
<Clicking>., <sniffing>

Table 4: Examples of automatically selected key-
words (shown for most frequent DAs).

5.2 LSTM Parameters

For the implementation of the baseline sentence
model (see Section 3.1) the NN packages provided
by Lei et al. (2015a) and Lei et al. (2015b) were
used. One hyperparameter at a time is tuned while
keeping the remaining ones fixed in order to de-
termine the best configuration. Based on findings
taken from literature (Khanpour et al., 2016), we
initialize the parameters with the following values:
word embeddings=200-dimensional vectors with
GloVe (Pennington et al., 2014), decay rate=0.7,
dropout=0.3, pooling-mechanism=mean-pooling.

Word Embeddings. Keeping the hyperparam-
eters of the LSTM network fixed, different word-
to-vector techniques and the dimensionality of
the word vectors, that constitute part of the in-
put to the network, are tested. The word vec-
tors are trained either with word2vec (Mikolov
et al., 2013a; Mikolov et al., 2013b) method on
the GoogleNews corpus or with the GloVe (Pen-
nington et al., 2014) method on the Common-
Crawl corpus. Regarding the dimensions of the
word embeddings, we use those referred in (Lee
and Dernoncourt, 2016) 1. The word embed-
dings are then concatenated with the features ex-
tracted by the semantic model. The performance
for various dimensions is presented in Table 5. As
shown in this table, the best performance (75.6%)
is achieved when 200-dimensional word embed-
dings are used. Therefore, for the experiments that
follow this setting is used.

Decay Rate. The decay rate is a regulariza-
tion factor of the update of the network connec-
tion weights in order to avoid overfitting of the net-
work. Typically, the decay rate value lies between
0 and 1. In this work, the decay rates that are
recommended in the literature (Lee and Dernon-
court, 2016; Khanpour et al., 2016) are examined,
as shown in Table 5. The best performance (75.6%
accuracy) is achieved with decay rate equal to 0.7
and this setting is used for the rest experiments.

Dropout. For most DNNs, dropout (Hinton et
al., 2012) is used as a regularization technique
against overfitting. In Table 5, the impact of
dropout rate on the classification accuracy is pre-
sented for values in the range between 0.0 and
0.5 as proposed in the literature (Lee and Dernon-
court, 2016; Khanpour et al., 2016). The best per-

1The word2vec method yields lower classification accu-
racy (by 0.2%) compared to GloVe and is not reported in Ta-
ble 5.
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Word embeddings Decay rate Dropout Pooling mechanism Classification
Accuracy(%)

50

0.7 0.3 mean

74.7
150 75.4
200 75.6
300 75.2

200
0.3

0.3 mean
74.3

0.5 75.1
0.9 74.1

200 0.7

0.0

mean

75.4
0.1 75.4
0.2 75.5
0.4 75.4
0.5 75.2

200 0.7 0.3
max 75.3
last 75.2

Table 5: Performance of LSTM hyperparameters w.r.t. test set.

formance (75.6% accuracy) is achieved when the
dropout rate equals to 0.3 and this setting is used
for the experiments that follow.

Pooling mechanism. The various mechanisms
that can be used in the pooling layer (max-, mean-,
and last-pooling) as described in Section 3.1, are
tested. The performance (classification accuracy)
for various pooling schemes (max, mean, last) is
reported in Table 5. The highest classification
accuracy (75.6%) is yielded by the mean-based
scheme, which is adopted.

Other Hyperparameters. Here, we briefly
mention the settings for a number of other pa-
rameters following literature findings (Khanpour
et al., 2016). The value of l2-regularization is set
at 1e − 5 and the tanh function is used for acti-
vation in the LSTM cell. Moreover, as reported
by Khanpour et al. (2016) changes on the learning
rate do not have an impact on the performance of
the model. Hence, the learning rate is set at 1e−3.

6 Evaluation Results

In Table 6, the classification accuracy for both
the baseline and proposed model is reported. The
highest accuracy (75.6%) is achieved by the pro-
posed model outperforming the baseline by 3.8%
when both sentence and discourse information is
used. Regarding the sentence-level analysis, the
difference between the proposed model and the
baseline is even bigger (4.3%). In Table 6 the
performance of the baseline model, when apply-

ing preprocessing of the dataset, is also presented.
In this case, the proposed model still outperforms
the baseline by 1.7% accuracy.

Based on the results of Table 6, the proposed
model benefits from the additional semantic infor-
mation. Moreover, it is demonstrated that the pro-
posed model avoids the need for preprocessing of
the dataset2.

The performance of the proposed model is com-
parable with the state-of-the-art3 classification ac-
curacy (see Table 7 for an overview) which equals
to 77.0% (Ji et al., 2016). An advantage of the
present work is the utilization of straightforward
feature extraction compared to (Ji et al., 2016) that
requires the identification of latent discourse-level
features.

7 Conclusions

In this work, we demonstrated the effectiveness
of the incorporation of DA-specific semantic fea-
tures in RNN-based DA classification. Those fea-
tures were computed with respect to a set of salient
keywords meant to semantically represent the DA
of interest. The proposed features were found to
yield 1.7% (absolute) improvement in classifica-
tion accuracy with respect to the baseline approach

2This was experimentally justified, so, the performance of
the proposed model when applying data preprocessing is not
reported.

3Also, we replicated (use of same model implementation
and data) the experiments proposed in (Khanpour et al., 2016)
without achieving the same results.
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Model Analysis Level Preprocessing Classification
Accuracy(%)

Baseline
sentence

7 69.5
3 72.8

Proposed 7 73.8

Baseline Sentence &
7 71.8

discourse
3 73.9

Proposed 7 75.6

Table 6: Performance of the baseline and the proposed model.

Model Classification
Accuracy(%)

Majority classification
baseline

31.6

Proposed 75.6
HMM (Stolcke et al.,
2000)

71.0

LSTM (Lee and
Dernoncourt, 2016)

69.6

CNN (Lee and
Dernoncourt, 2016)

73.1

RCNN (Kalchbrenner
and Blunsom, 2013)

73.9

DRLM-joint training (Ji
et al., 2016)

74.0

DRLM-conditional
training (Ji et al., 2016)

77.0

Tf-idf (baseline) 47.3
Inter-annotator
agreement

84.0

Table 7: Performance of the proposed model and
other methods from the literature.

that relies solely on word-level embeddings. Also,
we experimentally showed that the discourse-level
(specifically, the consideration of current and the
previous two utterances) further improves on the
baseline performance. Unlike similar approaches
presented in the literature, the proposed model
does not require any additional tools meant for the
preprocessing of dialogues transcriptions.

Regarding future work, we plan to investigate
the incorporation of more features derived from
deeper discourse analysis. In addition, we aim to
further validate the experimental findings of this
work by using datasets in languages other than En-
glish.
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