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Abstract

We address the problem of interac-
tively learning perceptually grounded
word meanings in a multimodal dialogue
system. Human tutors can correct, ques-
tion, and confirm the statements of a dia-
logue agent which is trying to interactively
learn the meanings of perceptual words,
e.g. colours and shapes. We show that
di↵erent learner and tutor dialogue strate-
gies lead to di↵erent learning rates, accu-
racy of learned meanings, and e↵ort/costs
for human tutors. For example, we show
that a learner which can handle corrections
in dialogue, and its own uncertainty about
what it sees, can learn meanings that are as
accurate as a fully-supervised learner, but
with less cost/e↵ort to the human tutor.

1 Introduction

Identifying, classifying and talking about ob-
jects or events in the surrounding environment
are key capabilities for intelligent, goal-driven
systems that interact with other agents and the
external world (e.g. smart phones, robots, and
other automated systems), as well as for image
search/retrieval systems. To this end, there has
recently been a surge of interest and significant
progress made on a variety of related tasks, in-
cluding generation of Natural Language (NL) de-
scriptions of images, or identifying images based
on NL descriptions (Karpathy and Li, 2015; Bruni
et al., 2014; Socher et al., 2014). Another strand
of work has focused on learning to generate ob-
ject descriptions and object classification based on
low level concepts/features (such as colour, shape
and material), enabling systems to identify and de-
scribe novel, unseen images (Farhadi et al., 2009;
Silberer and Lapata, 2014; Sun et al., 2013).

Our goal is to build interactive systems that can
learn grounded word meanings relating to their
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S: Is this a green
square?
T: No it’s red
S: Thanks.

2
66666664
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p2 : red(x)
p3 : square(x)
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T: What can you see?
S: something orange.
What is it?
T: A circle.
S: Thanks.
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x1=o2 : e
p : circle(x1)
p1 : orange(x1)
p2 : see(sys, x1)

3
777777777775

Figure 1: Interactively agreed semantic contents

perceptions of real-world objects – this is di↵er-
ent from previous work such as e.g. (Roy, 2002),
that learn groundings from descriptions without
any interaction, and more recent work using Deep
Learning methods (e.g. (Socher et al., 2014)).

Most machine learning approaches to this type
of problem rely on training data of high quantity
with no possibility of online error correction. Fur-
thermore, they are unsuitable for robots and mul-
timodal systems that need to continuously, and in-
crementally learn from the environment, and may
encounter objects they haven’t seen in training
data. These limitations are likely to be allevi-
ated if systems can learn concepts, as and when
needed, from situated dialogue with humans. In-
teraction with a human tutor also enables systems
to take initiative and seek the particular informa-
tion they need or lack by e.g. asking questions with
the highest information gain (see e.g. (Skocaj et
al., 2011), and Fig. 1). For example, a robot could
ask questions to learn the colour of a “square” or to
request to be presented with more “red” things to
improve its performance on the concept (see e.g.
Fig. 1). Furthermore, such systems could allow
for meaning negotiation in the form of clarifica-
tion interactions with the tutor.

This setting means that the system must be
trainable from little data, compositional, adaptive,
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and able to handle natural human dialogue with
all its glorious context-sensitivity and messiness
– for instance so that it can learn visual concepts
suitable for specific tasks/domains, or even those
specific to a particular user. Interactive systems
that learn continuously, and over the long run from
humans need to do so incrementally, quickly, and
with minimal e↵ort/cost to human tutors.

In this paper, we first outline an implemented
dialogue system that integrates an incremental, se-
mantic grammar framework, especially suited to
dialogue processing – Dynamic Syntax and Type
Theory with Records (DS-TTR1 (Kempson et al.,
2001; Eshghi et al., 2012)) with visual classi-
fiers which are learned during the interaction, and
which provide perceptual grounding for the ba-
sic semantic atoms in the semantic representations
(Record Types in TTR) produced by the parser
(see Fig. 1, Fig. 2 and section 3). In e↵ect, the dia-
logue with the tutor continuously provides seman-
tic information about objects in the scene which is
then fed to online classifiers in the form of train-
ing instances. Conversely, the system can utilise
the grammar and its existing knowledge about the
world, encoded in the meanings it has already
learned, to make reference to and formulate ques-
tions about the di↵erent attributes of an object
identified in the visual scene.2.

We then go on to use this system, in interac-
tion with a simulated human tutor, to test hypothe-
ses about how the accuracy of learned meanings,
learning rates over time, and the overall cost/e↵ort
for the human tutor is a↵ected by di↵erent dia-
logue policies and capabilities.

2 Related work

In this section, we will present an overview of vi-
sion and language processing systems, as well as
multi-modal systems that learn to associate them.
We compare them along two main dimensions: Vi-
sual Classification methods: o✏ine vs. online and
the kinds of representation learned/used.
Online vs. O✏ine Learning. A number of im-
plemented systems have shown good performance
on classification as well as NL-description of
novel physical objects and their attributes, either
using o✏ine methods as in (Farhadi et al., 2009;

1Download from http://dylan.sourceforge.net
2Here we assume that the words being grounded are in the

lexicon, i.e. that their syntactic and semantic type are known:
we leave the problem of grammar induction to one side here,
though see (Eshghi et al., 2013)

Lampert et al., 2014; Socher et al., 2013; Kong et
al., 2013), or through an incremental learning pro-
cess, where the system’s parameters are updated
after each training example is presented to the sys-
tem (Furao and Hasegawa, 2006; Zheng et al.,
2013; Kristan and Leonardis, 2014). For the inter-
active learning task presented here, only the latter
is appropriate, as the system is expected to learn
from its interactions with a human tutor over a pe-
riod of time. Shen & Hasegawa (2006) propose
the SOINN-SVM model that re-trains linear SVM
classifiers with data points that are clustered to-
gether with all the examples seen so far. The clus-
tering is done incrementally, but the system needs
to keep all the examples so far in memory. Kristian
& Leonardis (2014), on the other hand, propose
the oKDE model that continuously learns categor-
ical knowledge about visual attributes as probabil-
ity distributions over the categories (e.g. colours).
However, when learning from scratch, it is unre-
alistic to predefine these concept groups (e.g. that
red, blue, and green are colours). Systems need to
learn for themselves that, e.g. colour is grounded
in a specific sub-space of an object’s features. For
the visual classifiers, we therefore assume no such
category groupings here, and instead learn individ-
ual binary classifiers for each visual attribute (see
section 3.1 for details).

Distributional vs. Logical Representations.
Learning to ground natural language in percep-
tion is one of the fundamental problems in Arti-
ficial Intelligence. There are two main strands of
work that address this problem: (1) those that learn
distributional representations using Deep Learn-
ing methods: this often works by projecting vector
representations from di↵erent modalities (e.g. vi-
sion and language) into the same space in order
to be able to retrieve one from the other (Socher
et al., 2014; Karpathy and Li, 2015; Silberer and
Lapata, 2014); (2) those that attempt to ground
symbolic logical forms, obtained through seman-
tic parsing (Tellex et al., 2014; Kollar et al., 2013;
Matuszek et al., 2014) in classifiers of various en-
tities types/events/relations in a segment of an im-
age or a video. Perhaps one advantage of the latter
over the former method, is that it is strictly com-
positional, i.e. the contribution of the meaning of
an individual word, or semantic atom, to the whole
representation is clear, whereas this is hard to say
about the distributional models. As noted, our
work also uses the latter methodology, though it is
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dialogue, rather than sentence semantics that we
care about. Most similar to our work is probably
that of Kennington & Schlangen (2015) who learn
a mapping between individual words - rather than
logical atoms - and low-level visual features (e.g.
colour-values) directly. The system is composi-
tional, yet does not use a grammar (the composi-
tions are defined by hand). Further, the ground-
ings are learned from pairings of object references
in NL and images rather than from dialogue.

What sets our approach apart from others is:
a) that we use a domain-general, incremental se-
mantic grammar with principled mechanisms for
parsing and generation; b) Given the DS model
of dialogue (Eshghi et al., 2015), representations
are constructed jointly and interactively by the tu-
tor and system over the course of several turns
(see Fig. 1); c) perception and NL-semantics are
modelled in a single logical formalism (TTR); d)
we e↵ectively induce an ontology of atomic types
in TTR, which can be combined in arbitrarily
complex ways for generation of complex descrip-
tions of arbitrarily complex visual scenes (see e.g.
(Dobnik et al., 2012) and compare this with (Ken-
nington and Schlangen, 2015), who do not use a
grammar and therefore do not have logical struc-
ture over grounded meanings).

3 System Architecture

We have developed a system to support an
attribute-based object learning process through
natural, incremental spoken dialogue interaction.
The architecture of the system is shown in Fig. 2.
The system has two main modules: a vision mod-
ule for visual feature extraction and classification;
and a dialogue system module using DS-TTR. Be-
low we describe these components individually
and then explain how they interact.

3.1 Attribute-based Classifiers used

Yu et. al (2015a; 2015b) point out that neither
multi-label classification models nor ‘zero-shot’
learning models show acceptable performance on
attribute-based learning tasks. Here, we instead
use Logistic Regression SVM classifiers with
Stochastic Gradient Descent (SGD) (Zhang, 2004)
to incrementally learn attribute predictions.

All classifiers will output attribute-based label
sets and corresponding probabilities for novel un-
seen images by predicting binary label vectors.
We build visual feature representations to learn

classifiers for particular attributes, as explained
below.

3.1.1 Visual Feature Representation
In contrast with previous work (Yu et al., 2015a;
Yu et al., 2015b), to reduce feature noise through
the learning process, we simply extract a a 1280-
dimensional feature vector consisting of only two
base feature categories, i.e. the colour space for
colour attributes, and a ‘bag of visual words’ for
the object shapes/class (as shown in Fig. 2).

Colour descriptors, consisting of HSV colour
space values, are extracted for each pixel and then
are quantized to a 16⇥4⇥4 HSV matrix. These de-
scriptors inside the bounding box are binned into
individual histograms. Meanwhile, a bag of visual
words is built in PHOW descriptors using a visual
dictionary (that is pre-defined with a handmade
image set). These visual words are calculated us-
ing 2x2 blocks, a 4-pixel step size, and quantized
into 1024 k-means centres.

3.2 Dynamic Syntax and Type Theory with
Records

Dynamic Syntax (DS) a is a word-by-word incre-
mental semantic parser/generator, based around
the Dynamic Syntax (DS) grammar framework
(Cann et al., 2005) especially suited to the frag-
mentary and highly contextual nature of dialogue.
In DS, dialogue is modelled as the interactive and
incremental construction of contextual and seman-
tic representations (Eshghi et al., 2015). The con-
textual representations a↵orded by DS are of the
fine-grained semantic content that is jointly nego-
tiated/agreed upon by the interlocutors, as a result
of processing questions and answers, clarification
requests, corrections, acceptances, etc. We cannot
go into any further detail here due to lack of space,
but proceed to briefly describe Type Theory with
Records, the formalism in which the DS contex-
tual/semantic representations are couched.

Type Theory with Records (TTR) is an exten-
sion of standard type theory shown to be use-
ful in semantics and dialogue modelling (Cooper,
2005; Ginzburg, 2012). TTR is particularly well-
suited to our problem here as it allows information
from various modalities, including vision and lan-
guage, to be represented within a single semantic
framework (see e.g. Larsson (2013); Dobnik et al.
(2012) who use it to model the semantics of spatial
language and perceptual classification).

In TTR, logical forms are specified as record
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Figure 2: Architecture of the teachable system

types (RTs), which are sequences of fields of the
form [ l : T ] containing a label l and a type T .
RTs can be witnessed (i.e. judged true) by records
of that type, where a record is a sequence of label-
object pairs [ l = v ]. We say that [ l = v ] is of type
[ l : T ] just in case v is of type T . Importantly for
us here, TTR has a subtyping relation, in terms of
which inference is defined; but it also allows se-
mantic information to be incrementally specified,
i.e. record types can be indefinitely extended with
more information/constraints. This is a key fea-
ture since it allows the system to encode partial
knowledge about objects, and for this knowledge
to be extended in a principled way, as and when it
becomes available.

For further detail on TTR, see Cooper (2005)
and Dobnik et al. (2012) among others.

3.3 Integration

Fig. 2 shows how the various parts of the system
interact. At any point in time, the system has ac-
cess to an ontology of (object) types and attributes
encoded as a set of TTR Record Types, whose in-
dividual atomic symbols, such as ‘red’ or ‘square’
are grounded in the set of classifiers trained so far.

Given a set of individuated objects in a scene,
encoded as a TTR Record, the system can utilise
its existing ontology to output some maximal set
of Record Types characterising these objects (see
e.g. Fig. 1). Since these representations are shared
by the DS-TTR module, they provide a direct in-
terface between perceptual classification and se-
mantic processing in dialogue: they can be used

directly at any point to generate utterances, or ask
questions about the objects.

On the other hand, the DS-TTR parser incre-
mentally produces Record Types (RT), represent-
ing the meaning jointly established by the tutor
and the system so far. In this domain, this is ul-
timately one or more type judgements, i.e. that
some scene/image/object is judged to be of a par-
ticular type, e.g. in Fig. 1 that the individuated ob-
ject, o1 is a red square. These jointly negotiated
type judgements then go on to provide training in-
stances for the classifiers. In general, the training
instances are of the form, hO,T i, where O is an
image/scene segment (an object or TTR Record),
and T , a record type. T is then decomposed into its
constituent atomic types T1 . . . Tn, s.t.

V
Ti = T .

The judgements O : Ti are then used directly to
train the classifier that grounds the Ti.
4 Experiments and Results

In general, in real-world problems, there are a
variety of dialogue behaviours that human tu-
tors might adopt to teach the learner with novel
knowledge, and these might lead to di↵erent reac-
tions from the learner/system as well as di↵erent
outcomes for the recognition performance of the
learned concepts/meanings, e↵ort from the tutor
and trade-o↵s between these. Moreover, a learner
with di↵erent capabilities (described below) can
also a↵ect these performances through dialogue.
Our goal in this paper is therefore to explore the
e↵ects of these dialogue behaviours and capabil-
ities on the overall performance of the learning
agent by measuring the trade-o↵ between recog-
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nition performance and tutoring cost.

4.1 Design
Before explaining the experiment configurations,
there are several notions that need to be defined
in terms of basic dialogue capabilities, tutor be-
haviours, and learner dialogue capabilities –

Basic Dialogue Capabilities: The following ca-
pabilities are explored for both the tutor and the
learner (see examples in Fig. 3):

• Listening: this only refers to a learner, while
the tutor is making a statement about a spe-
cific object/attribute;
• Statement: the ability for both learners and

tutors to describe attributes of an object, e.g.
“this is a red square” or “this is red”;
• Correction: the ability to process corrections

only from the tutor, e.g. “no, this is green” or
“no, this is a circle’;
• Implicit/explicit confirmation: the ability

to process confirmations from the tutor, e.g.
“Yes, it’s a square”;
• Question-answering: the ability to answer

questions from both the tutor and the learner,
e.g. “T: what is this? S: this is a red square.”;
• Question-asking: the ability to ask WH or

polar questions requesting correct informa-
tion, e.g. “what colour is this?” or “is this
a red square?”.

Tutor Behaviours: Following previous work
(Skočaj et al., 2009), we generally identify tutor
behaviours based on how he/she treats the learner
into two groups: 1) Tutor-Driven (TD): The tutor
always gives available information about a partic-
ular object, i.e. supervised learning (always pro-
viding labels), by directly making statements (e.g.
“this is a square” or “this is a red square”). This
means that the whole learning process is an uni-
directional interaction only handled by the tutor.
In this case, the learner only needs to listen and
update its learning models (i.e. the visual classi-
fiers) upon what information the tutor presented.
2) Tutor-Corrected (TC): while the learner is de-
scribing or asking something about the object, the
tutor only asks WH questions and corrects mis-
takes of the learner, and otherwise confirms cor-
rect statements (e.g. “T: what is this? L: this is
a red square. T: yes/no, it is a green square”
in Fig. 3). In contrast to the TD behaviour, the

learner performs more actively to get involved
with the learning process with its own predic-
tions/knowledge. It will update its classifiers only
when the tutor provides answers or confirms.

According to the previous work from Skočaj
et. al. (2009), both tutor strategies are frequently
adopted in a perceptual learning process, which
may lead to di↵erent levels of learner involve-
ment. They assumed that the tutor can always
perform well through the entire learning process.
However, this may be extremely idealised for real-
world problems, in which human tutors may not
always supply all their knowledge when informing
about a visual object. In this paper, we therefore
also take the following situations into account:
• “Good-Tutor” (GT): the tutor always gives

all the labels for each image, always corrects
all the mistakes of the learner, and always
confirms correct statements by the learner.
• “Lazy-Tutor” (LT): this tutor only gives one

of the correct labels at a time (e.g. “it’s red”
or “it’s a square”), and only corrects one mis-
take at a time. It always confirms when asked
to. This tutor is more similar to what we
can expect from real human behaviour when
teaching robots than the Good Tutor.

Learner Dialogue Capabilities: In real-world
learning tasks, a learner might be required to con-
sider several additional capabilities, which may
enable it to respond to tutor behaviours in a more
natural way, especially with a Lazy-Tutor situa-
tion. Moreover, these capabilities are also likely
to help improve the overall performance of the
learner at the end of learning process, i.e. achiev-
ing a better trade-o↵ between the performance
of object/attribute recognition and the cost for
the tutor. In this paper, we use the dialogue
system outlined above to carry out experiments
with three dialogue capabilities with two levels:
1) Uncertainty (+UC/-UC): determines whether
the learner takes into account, in its dialogue be-
haviour, its own subjective confidence about the
attributes of the presented object. The confidence
is the score assigned by any of its attribute classi-
fiers of the object being a positive instance of an
attribute (e.g. ‘red’) - see below for how a confi-
dence threshold is used here. In condition +UC,
the agent will not ask a question if it is confident
about the answer, and it will hedge the answer to a
tutor question if it is not confident, e.g. “T: What is
this? L: is this a red square?”. In -UC, the learner
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TD TC	(-UC) TC	(+UC)

Go
od

(Id
ea
l)	
Tu

to
r T:		this	is	red.

L:		okay.	
T:		this	is	a	square.
L:		okay.
-----------	or	-------------	
T:		this	is	a	red	square.
L:		okay.

T:		what	is	this?
L:		this	is	a	red	square.
T:		no,	this	is	a	green	square.
L:		okay.

T:		what	is	this?
L:		is	this	a	red	square?
T:		no,	this	is	a	green	square.
L:		okay.

T:		this	is	red.
L:		okay.	

T:		what	is	this?
L:		this	is	a	red	square.
T:		yes,	it	is	a	square.
L:		okay.

T:		what	is	this?
L:		is	this	a	red	square?
T:		yes	,	this	is	a	square.
L:		okay.

T:		this	is	red.
L:		okay.	what	shape	is	it?
T:		this	is	a	square.
L:		okay.

T:		what	is	this?
L:		this	is	a	red	square.
T:		no,	this	is	a	circle.
L:		okay.	Is	the	colour	correct?
T:		yes.
L:		okay.

T:		what	is	this?
L:		is	this	a	green	circle?
T:		no,	this	is	a	square.
L:		okay.	Is	the	colour	correct?
T:		no,	this	is	red.	
L:		okay.

La
zy
(n
at
ur
al
)	T

ut
or

Without	Knowledge-Demanding	(-KD)

With	Knowledge-Demanding	(+KD)

Figure 3: Example dialogues in di↵erent conditions (TD = tutor-driven, TC = tutor-corrected, -UC= no
learner uncertainty, +UC= learner uncertainty)

is confident and always takes itself to know the
attributes of the given object (as given by its cur-
rently trained classifiers), and behaves according
to that assumption. 2) Knowledge-Demanding
(+KD/-KD): this determines whether the learner
can request further details/information about ob-
jects, which may be useful when interacting with
a “Lazy” Tutor (described above). In condition
+KD, the learner is able to request more infor-
mation by asking extra questions (see Fig. 3 e.g.
“what (colour/shape) is it? or “is the colour cor-
rect?”. Otherwise, the learner with -KD will only
update the classifiers based on the information
provided.

Confidence Threshold: To determine when and
how the agent properly copes with its attribute-
based predictions, we use confidence-score thresh-
olds. It consists of two values, a base threshold
(e.g. 0.5) and a positive threshold (e.g. 0.9).

If the confidences of all classifiers are under the
base threshold (i.e. the learner has no attribute la-
bel that it is confident about), the agent will ask
for information directly from the tutor via ques-
tions (e.g. “L: what is this?”).

On the other hand, if one or more classifiers
score above the base threshold, then the positive
threshold is used to judge to what extent the agent
trusts its prediction or not. If the confidence score
of a classifier is between the positive and base
thresholds, the learner is not very confident about
its knowledge, and will check with the tutor, e.g.

“L: is this red?”. However, if the confidence score
of a classifier is above the positive threshold, the
learner is confident enough in its knowledge not
to bother verifying it with the tutor. This will lead
to less e↵ort needed from the tutor as the learner
becomes more confident about its knowledge.

However, since a learner with high confidence
will not ask for assistance from the tutor, a low
positive threshold may reduce the opportunities
that allow the tutor to correct the learner’s mis-
takes. With an additional experiment (note: we
will not explain it here due of lack of space), we
determined a 0.5 base threshold and a 0.9 positive
threshold as the most appropriate values for an in-
teractive learning process - i.e. this preserved good
classifier recognition while not requiring much ef-
fort from the tutor. In (Yu et al., 2016) we show
how these thresholds can be optimised.

4.2 Experimental Setup

We carried out a set of experiments to investigate
the e↵ects of these dialogue policies on an interac-
tive learning process with a tutor. We compare dif-
ferent behaviours and capabilities with two base-
line policies without corrections (NC), in which
the learner cannot process corrections but only
confirmations from the tutor. This means that the
learner can update its classifiers only when its own
predictions are correct. There are several settings
related to these experiments below:
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Table 1: Recognition Score Table
Yes LowYes LowNo No

Yes 1 0.5 -0.5 -1
No -1 -0.5 0.5 1

Table 2: Tutoring Cost Table
Cin f Cyes Ccrt Cign Cturn

1 0.25 1 0 0.15

Tutor Simulation and Policy: To run our exper-
iment on a large-scale, we have hand-crafted an In-
teractive Tutoring Simulator, which simulates the
behaviour of a human tutor3. The tutor policy is
set up based on di↵erent tutor-based behaviours
and situations as mentioned above.
Evaluation and Cross-validation: To evaluate
the performance of the system in each condition,
we performed a 100-fold cross validation with 500
images for training and 100 for testing within a
handmade object set4. For each training instance,
the learning system interacts with the simulated tu-
tor. We define a Learning Step as comprised of 25
such dialogues. At the end of each learning step,
the system is tested using the test set. The val-
ues used for the Tutoring Cost and the Recognition
Score at each learning step correspond to averages
across the 100 folds.

4.3 Evaluation Metrics

To test how the di↵erent dialogue capabilities and
strategies a↵ect the language learning process, we
follow metrics proposed by Skočaj et al.(2009),
that consist of two main evaluation measures, i.e.
Recognition Scores and Tutoring Costs. We tweak
the details below to reflect our own dialogue sys-
tem configurations.
Recognition score: This is a metric measuring
the overall accuracy of the learned word mean-
ings / classifiers, which “rewards successful clas-
sifications (i.e. true positives and true negatives)
and penalizes incorrect predictions (i.e. false pos-
itives and false negatives)” (Skočaj et al., 2009) 5.
As the proposed system considers both correct-

3The experiment involves hundreds of dialogues, so run-
ning this experiment with real human tutors has proven too
costly at this juncture, though we plan to do this for a full
evaluation of our system in the future.

4All data from this paper will be made freely available.
5we use recognition score instead of accuracy because it

better handles uncertainty predictions than accuracy, which
could be more similar to a human-like learning task.

ness of predicted labels and prediction confidence
on learning tasks, the measure will also take the
true labels with lower confidence into account,
as shown in Table 1; “LowYes” means that the
system made positive predictions but with lower
confidence. In this case, the system can gener-
ate a polar question for requesting tutor feedback.
“LowNo” is similar to “LowYes”, but only works
on negative predictions.
Cost: The cost measure reflects the e↵ort
needed by a human tutor in interacting with the
system. Skocaj et. al. (2009) point out that a com-
prehensive teachable system should learn as au-
tonomously as possible, rather than involving the
human tutor too frequently. There are several pos-
sible costs that the tutor might incur, see Table 2:
Cin f refers to the cost of the tutor providing infor-
mation on a single attribute concept (e.g. “this is
red” or “this is a square”), and we set this cost as
1; Cyes is the cost of a simple confirmation (like
“yes”, “right”) and set it to be 0.25; Ccrt is the cost
of correction for a single concept (e.g. “no, it is
blue” or “no, it is a circle”) and is also set to be
1. Moreover, the number of dialogue turns from
the tutor was also taken into account in measuring
total cost: each single turn costs 0.15 in this ex-
periment. These values are based on the intuition
that it is just as much e↵ort for the Tutor to provide
a concept as to correct one, and that confirmation
has a smaller cost, while each turn also requires a
small e↵ort from the Tutor.
Performance Score As mentioned above, an ef-
ficient Learner dialogue policy should consider
both classification accuracy (Recognition score)
and tutor e↵ort (Cost). We thus defined an inte-
grated measure – the Performance Score (S per f ) –
that we use to compare the general performance
across di↵erent dialogue policies and capabilities:

S per f =
S recog

Ctutor

i.e. the ratio of Recognition Score achieved by
the Learner to the e↵ort/Cost required by the Tu-
tor. We seek dialogue strategies that balance these
metrics.

4.4 Results
We first investigate the improvement of learning
performance over time for di↵erent learner poli-
cies and capabilities with an ideal tutoring situ-
ation (Good Tutor) (see Fig. 4). We compared
both tutor policies (TD and TC) with correspond-
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Figure 4: Evolution of Learning Performance in the Good Tutor Condition (TD = tutor-driven, TC =
tutor-corrected, -UC= no learner uncertainty, +UC= learner uncertainty, NC= no corrections)
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Figure 5: Evolution of Learning Performance in the Lazy Tutor Condition (TD = tutor-driven, TC =
tutor-corrected, UC= learner uncertainty, NC= no corrections, KD= Knowledge-demanding)
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Figure 6: Learner policy Performance with both Tutor types TD = tutor-driven, TC = tutor-corrected,
UC= learner uncertainty, NC= no corrections, KD= Knowledge-demanding)

ing learner strategies and capabilities (+/-UC and
NC) in terms of Recognition Score and Tutoring
Cost. (Note that in the Good Tutor case, +/-KD
has no e↵ect).

Here we see that the Tutor-Driven (TD, blue
line) and Tutor-Corrected without Uncertainty
(TC-UC, red line) conditions gain the highest
Recognition scores, while conditions without the
Learner ability to process tutor corrections (NC)

perform badly, as expected. In terms of Tutor-
ing Cost though, we see that TD has a high cost
while TC-UC has quite low cost. Interestingly,
TC+UC (Tutor-corrected, with Uncertainty, green
line), has a lower cost than both of these con-
ditions, while still achieving a high Recognition
score. This is because the Learner which is aware
of its uncertainty about classifier outputs requires
fewer corrections from the Tutor, while the classi-
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fiers still become more accurate over time.
Similar to Fig. 4, Figs. 5a, b show the Recog-

nition Score and Tutoring Cost respectively for
the same learner strategies, but with a more nat-
ural tutoring situation (Lazy Tutor), and where the
learner can be Knowledge-Demanding (+/-KD).
In addition, Fig. 6 shows the overall performance
of di↵erent learner strategies (i.e. the trade-o↵s be-
tween the recognition score and the tutoring cost)
in the Good and Lazy Tutor situations separately.

Here, in the Good-Tutor condition, the TC-UC
policy (orange line) shows better overall perfor-
mance than TD (blue line) because of its lower
tutoring cost. In addition, though the Uncer-
tain Learner (TC+UC, green line) policy performs
slightly worse on recognition score (this might
be due to insu�cient error detection and recov-
ery), it also reduces the tutoring cost through time.
Hence, this policy achieves better performance
than the others in the final results (see Fig. 6a).

In terms of the Lazy-Tutor condition, both the
TD and TC-UC policies, without Knowledge-
demand (-KD), show slightly worse recognition
performance than they did under the Good Tutor
policy, because the learner does not gain as much
knowledge from the tutor in each learning step.
Whilst both policies cost much less than before for
the same reason, they show better performance in
the final results (as compared between Figures 6a
and 6b). By contrast, as a situation with two in-
correct predictions rarely occurs with the TC+UC-
KD policy (for only about 20 out of 500 images),
the Lazy-Tutor policy will not a↵ect Recognition
Score or Tutoring Cost very much for the TC+UC
policy (see Fig. 5a, b). Therefore, its final perfor-
mance shows a similar tendency as under the Good
Tutor condition.

Moreover, the results in Figure 5 also show
that a Knowledge-Demanding (+KD) learner pol-
icy may always improve recognition performance
(Fig. 5a). For the Lazy Tutor condition, the con-
ditions TC+UC+KD (pink line) and TC+UC-KD
(green dotted line) have the best overall perfor-
mance (Fig. 6b).

Since our ultimate goal here is to create a full
dialogue system that can learn accurate concepts
(word meanings) with little e↵ort from human tu-
tors, these results would lead us to choose a dia-
logue system that can can handle corrections – i.e.
some variant of the Tutor Corrected system. The
results show that, depending on the relative weight

between Recognition Score and Tutor Cost, an op-
timal Learner Dialogue Policy could, for exam-
ple, use TC-UC(NC) for the first 50 or 60 images,
and then switch to TC+UC. We investigate such
dynamic policies and their optimisation in a later
study using Reinforcement Learning methods (Yu
et al., 2016).

5 Conclusion

We have developed a multimodal dialogue in-
terface to explore the e↵ectiveness of situ-
ated dialogue with a human tutor for learning
perceptually-grounded word meanings. The sys-
tem integrates semantic representations from an
incremental semantic parser/generator, DS-TTR,
with attribute classification models that ground the
semantic representations.

We compared the system’s performance (its
Recognition Score and Tutor Cost) under several
di↵erent dialogue policies for interactive language
grounding, on a hand-made dataset of simple ob-
jects. Overall, we see that dialogue interaction is
important for teachable agents as it reduces the ef-
fort required from the human tutor. The fully su-
pervised cases (TD) have a high cost for the Tutor,
and equivalent final recognition performance can
be reached with less e↵ort when using a Tutor-
Corrected (TC) dialogue policy where the Learner
can process corrections in dialogue. Final Recog-
nition performance is slightly less good with learn-
ers which take their own uncertainty into account
(TC+UC), but they require much less e↵ort from
Tutors, resulting in better overall performance.

Ongoing work explores full Learner dialogue
policies (i.e. turn-based decisions about what to
say next) and their optimisation using Reinforce-
ment Learning methods (Rieser and Lemon, 2011;
Yu et al., 2016).
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Arash Eshghi, Julian Hough, Matthew Purver, Ruth
Kempson, and Eleni Gregoromichelaki. 2012. Con-
versational interactions: Capturing dialogue dynam-
ics. In S. Larsson and L. Borin, editors, From Quan-
tification to Conversation: Festschrift for Robin
Cooper on the occasion of his 65th birthday, vol-
ume 19 of Tributes, pages 325–349. College Publi-
cations, London.

Arash Eshghi, Julian Hough, and Matthew Purver.
2013. Incremental grammar induction from child-
directed dialogue utterances. In Proceedings of the
4th Annual Workshop on Cognitive Modeling and
Computational Linguistics (CMCL), pages 94–103,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

A. Eshghi, C. Howes, E. Gregoromichelaki, J. Hough,
and M. Purver. 2015. Feedback in conversation
as incremental semantic update. In Proceedings of
the 11th International Conference on Computational
Semantics (IWCS 2015), London, UK. Association
for Computational Linguisitics.

Ali Farhadi, Ian Endres, Derek Hoiem, and David
Forsyth. 2009. Describing objects by their at-
tributes. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern
Recognition (CVPR.

Shen Furao and Osamu Hasegawa. 2006. An in-
cremental network for on-line unsupervised classi-
fication and topology learning. Neural Networks,
19(1):90–106.

Jonathan Ginzburg. 2012. The Interactive Stance:
Meaning for Conversation. Oxford University
Press.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA,
June 7-12, 2015, pages 3128–3137.

Ruth Kempson, Wilfried Meyer-Viol, and Dov Gabbay.
2001. Dynamic Syntax: The Flow of Language Un-
derstanding. Blackwell.

Casey Kennington and David Schlangen. 2015. Sim-
ple learning and compositional application of per-
ceptually grounded word meanings for incremental
reference resolution. In Proceedings of the Confer-
ence for the Association for Computational Linguis-
tics (ACL-IJCNLP). Association for Computational
Linguistics.

Thomas Kollar, Jayant Krishnamurthy, and Grant
Strimel. 2013. Toward interactive grounded lan-
guage acqusition. In Robotics: Science and Systems.

Xiangnan Kong, Michael K. Ng, and Zhi-Hua Zhou.
2013. Transductive multilabel learning via label
set propagation. IEEE Trans. Knowl. Data Eng.,
25(3):704–719.

Matej Kristan and Ales Leonardis. 2014. Online dis-
criminative kernel density estimator with gaussian
kernels. IEEE Trans. Cybernetics, 44(3):355–365.

Christoph H. Lampert, Hannes Nickisch, and Stefan
Harmeling. 2014. Attribute-based classification for
zero-shot visual object categorization. IEEE Trans.
Pattern Anal. Mach. Intell., 36(3):453–465.

Sta↵an Larsson. 2013. Formal semantics for percep-
tual classification. Journal of logic and computa-
tion.

Cynthia Matuszek, Liefeng Bo, Luke Zettlemoyer, and
Dieter Fox. 2014. Learning from unscripted deictic
gesture and language for human-robot interactions.
In Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, July 27 -31, 2014,
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