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Abstract

Meaningful language use rests on the
grounding of the language in the non-
linguistic world and in the practices of
language users. This grounding is built
up and maintained in interaction, through
Conversational Grounding, which is the
interactive process with which interlocu-
tors build mutual understanding; Justifica-
tion, the ability to explain and provide rea-
sons for one’s language use; and Adap-
tation, the ability to accept corrections
and adapt future language use accordingly.
We outline a model of grounded seman-
tics that combines perceptual knowledge
(how to visually identify potential refer-
ents of terms; realised as classifiers tak-
ing visual information as input) and tax-
onomic knowledge (covering lexical rela-
tions such as hyponymy and hypernymy),
and we sketch a proof-of-concept imple-
mentation of a dialogue system that re-
alises the interactional skills that ground
this knowledge.

1 Introduction

Computer systems that process natural language
input and produce natural language output are be-
coming ever more common and ever more ca-
pable. So-called “intelligent personal assistants”
built into mobile phones are already serving real
customer needs (e.g., providing verbal access to
the user’s calendar), and current research systems
show impressive results on tasks like image cap-
tioning (given an image, produce a textual descrip-
tion of its content). And yet, there is a strong sense
in which these system do not mean anything with
their use of natural language. Why is that so?

We propose that meaningful language use rests
on the grounding of the language: in the non-
linguistic world; in itself, among the parts of the

language; and in the practices of the community
of language users. These are, at a least to a certain
degree, complementary aspects, as Hilary Putnam
(1973) pointed out with the claim that someone
who (like him) cannot reliably tell an elm from
a beech tree would still mean the same with elm
as someone who can. Marconi (1997) uses this
observation to motivate a model of what he calls
lexical competence that separates referential com-
petence—the competence to identify actual refer-
ents, which Putnam claims to lack with respect to
elms—and inferential competence, which uses se-
mantic knowledge to place meanings in relation to
other meanings (here, for example, the relation of
hyponymy between elm and tree).

This grounding is not static, however, but rather
is built up and maintained in interaction, through
Conversational Grounding, which is the interac-
tive process with which interlocutors build mutual
understanding; Justification, the ability to explain
and provide reasons for one’s language use; Adap-
tation, the ability to accept corrections and adapt
future language use accordingly.

Our aim in this paper is to outline a model of se-
mantic competence that can address these desider-
ata: That it explains what kind of discriminatory
power constrains meaningful language use, and
that this power is acquired, defended and adapted
in interaction. Its basis is a “two dimensional”
model of lexical knowledge. In this model, one di-
mension captures ‘know-how’ such as the knowl-
edge required to pick out the intended referent in
a visually presented scene, and the other captures
more semantic knowledge (‘know-that’) that en-
ables inferences, but can also, as we show, support
visual reference resolution. (This distinction is in-
spired by that between referential and inferential
lexical competence made by Marconi (1997), but
further generalised. The visual-grounding model
builds on (Kennington and Schlangen, 2015). See
discussion below.) Both kinds of knowledge can
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be trained from interaction data. The lexical repre-
sentations are used to compose meanings of larger
phrases. This composition process is transparent
(compared to composition in distributional seman-
tics, as discussed below), and hence is accessible
for inspection and correction.

To make our proposal concrete, and to investi-
gate the utility of interaction that has the system’s
own semantic competence as its topic, we imple-
mented an interactive system that tries to resolve
references to objects in images and can accept cor-
rections and provide explanations. Figure 1 shows
an excerpt of an actual interaction with the system
of a naive first-time user. (Image sources are cred-
ited in Section 7.1 below.)

2 Related Work

The idea of connecting words to what they de-
note in the real world via perceptual features goes
back at least to Harnad (1990), who coined “The
Symbol Grounding Problem”: “[H]ow can the se-
mantic interpretation of a formal symbol system be
made intrinsic to the system, rather than just par-
asitic on the meanings in our heads?” The pro-
posed solution was to link ‘categorial representa-
tions’ with “learned and innate feature detectors
that pick out the invariant features of object and
event categories from their sensory projections”.

This suggestion has variously been taken up in
computational work. An early example is Deb
Roy’s work from the early 2000s (Roy et al., 2002;
Roy, 2002; Roy, 2005). In (Roy et al., 2002),
computer vision techniques are used to detect ob-
ject boundaries in a video feed, and to compute
colour features (mean colour pixel value), posi-
tional features, and features encoding the relative
spatial configuration of objects. These features
are then associated in a learning process with cer-
tain words, resulting in an association of colour
features with colour words, spatial features with
prepositions, etc., and based on this, these words
can be interpreted with reference to the scene cur-
rently presented to the video feed.

Of more recent work, that of Matuszek et al.
(2012) is closely related to the approach we take.
The task in this work is to compute (sets of) refer-
ents, given a (depth) image of a scene containing
simple geometric shapes and a natural language
expression. In keeping with the formal semantics
tradition, a layer of logical form representation is
assumed; it is not constructed via syntactic parsing

User: Draw a new card
System: Ok.

U: Find the rightmost pillar
S: Let me see. Did you mean this?

U: yes
S: Ok.
U: Find the pavement
S: I’m going for this one. Correct?

U: This is not a pavement
S: Alright.
U: 1 is a fence
S: Ok.
U: find the fence
S: Let me see. Did you mean this?

U: yes
S: Thanks!

Figure 1: Example Interaction Reference candi-
dates outlined in red and without label; selected
candidates with numeric label. (Best viewed in
colour.)
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rules, however, but by a learned mapping (seman-
tic parsing). The non-logical constants of this rep-
resentation then are interpreted by linking them to
classifiers that work on perceptual features (rep-
resenting shape and colour of objects). Interest-
ingly, both mapping processes are trained jointly,
and hence the links between classifiers and non-
logical constants on the one hand, and non-logical
constants and lexemes on the other are induced
from data. In the work presented here, we take
a simpler approach that directly links lexemes and
perceptions, but does not yet learn the composi-
tion.

Most closely related on the formal side is re-
cent work by Larsson (2015), which offers a very
direct implementation of the ‘words as classi-
fiers’ idea (couched in terms of type theory with
records (TTR; (Cooper and Ginzburg, 2015)) and
not model-theoretic semantics). In this approach,
some lexical entries are enriched with classifiers
that can judge, given a representation of an object,
how applicable the term is to it. The paper also
describes how these classifiers could be trained (or
adapted) in interaction. The model is only speci-
fied theoretically, however, with hand-crafted clas-
sifiers for a small set of words, and not tested with
real data. More generally, the claim that the abil-
ity to negotiate meaning is an important compo-
nent of the competence of meaningful language
use, which we also make here, has been forcefully
argued for by Larsson and colleagues (Cooper and
Larsson, 2009; Larsson, 2010; Fernández et al.,
2011). (See also DeVault et al. (2006), who call
this process societal grounding and outline a for-
mal computational model of it.)

The second “dimension” in our semantic repre-
sentations concerns language-to-language ground-
ing. To explain within the framework of formal
semantics how some statements can be necessar-
ily true by virtue of meaning and not logical tau-
tology (e.g., “bachelors are unmarried”), Carnap
(1952) introduced meaning postulates, which are
axioms that explicitly state connections between
non-logical constants (e.g., ∀x.bachelor(x) →
¬married(x)). The computational resource
WORDNET (Fellbaum, 1998) can be seen as a
large-scale realisation of this concept. It is a
large database of word senses, different meanings
that a word can have. Further semantic relations
structure this lexicon (antonymy, hyponomy, hy-
pernymy, meronymy). As described below, we

use it as a starting point for encoding language-
to-language grounding, together with the more di-
rectly perception-oriented feature norms of Sil-
berer et al. (2013), which encode typical attributes
(“is brown”, “has feet”) for about 500 concepts.

In the present work, our focus is on acquiring
and using referential competence. On the onto-
logical side, for now we simply use pre-compiled
taxonomic/ontological resources. Methods exists
for automating the construction of such resources
(e.g., (Mitchell et al., 2015; Ganitkevitch et al.,
2013)), some even using dialogue (Hixon et al.,
2015). As another type of method, distributional
semantics has recently become popular for the un-
supervised acquisition of lexical relations (Turney
and Pantel, 2010; Mikolov et al., 2013), particu-
larly of the (typically rather vaguely specified) re-
lation of ‘similarity’. We will investigate the ap-
plicability of these methods in future work, but for
now make use of the greater expressiveness and
explicitness of more logic-inspired representations
as used in WORDNET.

3 Overview of the Model

As stated in the introduction, a desideratum for the
model is that it explains what kind of discrimina-
tory power constrains meaningful language use,
and how this power is acquired, defended and
adapted in interaction. To make this more con-
crete (and to move from Putnam’s tree example to
a different biological kingdom), what we want to
achieve is that our model can capture the knowl-
edge required to deal satisfactorily both with (1-a)
and (1-b).

(1) a. Find the Rottweiler in the picture.
b. Peter walked past a Rottweiler. The

dog was barking ferociously.

But what is this knowledge? For (1-a), this must
be information connected with the visual appear-
ance of the object that is to be identified; for
(1-b), the required knowledge is that a Rottweiler
is a type of dog, and hence that the definite noun
phrase in the second sentence can refer to the
object introduced into the discourse with the in-
definite in the first. These types of knowledge
can interact: We’d still be satisfied if, when pre-
sented with an image containing one Rottweiler
and, say, five cats, the addresse points at the Rot-
tweiler, even if they don’t actually know what dis-
tinguishes Rottweilers from other breeds of dog
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and all they knew was what visually distinguishes
dogs from cats.

We take the basic idea from Marconi (1997)
that there is a categorical difference between these
types of knowledge. Marconi (1997) labels these
aspects of lexical competence referential and in-
ferential. While our focus in the work presented
here is also on reference, we would argue that the
distinction is more generally one between know-
how and know-that, with the former covering the
knowledge involved in executing actions (“cy-
cling”, “drawing an elephant”) as well, and we
will refer to the types with these labels. These
“two dimensional” lexical semantic representa-
tions then must be composed into representations
of phrases, where the composition process as well
as what went into it must be open to justification
and critique in interaction. We address these parts
of the model in turn.

4 Two-Dimensional Lexical Semantics

(2) sketches the lexical entry for ‘Rottweiler’ with
its two basic components, “know-how/referential”
and “know-that/ontological”, as it will be ex-
plained in the following.

(2)

 Rottweilerkh/ref : λx.frt(x)
kt/ont : wn.hyponym,wn.hypernym, etc.


4.1 Visual/Referential know-how
We follow Kennington and Schlangen (2015) and
represent (and learn) visual-referential knowledge
as classifiers on perceptual input. We briefly re-
view their model here.

Let w be a word whose meaning is to be mod-
elled, and let x be a representation of an object
in terms of its visual features. The core ingredi-
ent then is a classifier that takes this representa-
tion and returns a score fw(x), indicating the “ap-
propriateness” of the word for denoting the object.
In (Kennington and Schlangen, 2015) and below,
the classifier is a binary logistic regression and the
score can be interpreted as a probability. Training
of the classifier will be explained below.

Noting a (loose) correspondence to Montague’s
(1974) intensional semantics, where the intension
of a word is a function from possible worlds to
extensions (Gamut, 1991), the intensional mean-
ing of w is then defined as the classifier itself, a
function from a representation of an object to an

“appropriateness score”:1

[[w]]obj = λx.fw(x) (1)

(Where [[.]] is a function returning the meaning
of its argument, and x is of the type of feature
given by fobj , the function computing a feature
representation for a given object.)

The extension of a word in a given (here, vi-
sual) discourse universe W can then be modelled
as a probability distribution ranging over all can-
didate objects in the given domain, resulting from
the application of the word intension to each object
(xi is the feature vector for object i, normalize()
vectorized normalisation, and I a random variable
ranging over the k candidates):

[[w]]Wobj =

normalize(([[w]]obj(x1), . . . , [[w]]obj(xk))) =

normalize((fw(x1), . . . , fw(xk))) = P (I|w)
(2)

4.2 Taxonomic/Ontological know-that
As mentioned above, for now we use pre-existing
resources as source of the initial ontological
knowledge. There is some selection of available
sources besides WORDNET (e.g., Freebase (Bol-
lacker et al., 2008) and ConceptNet2), but we start
with the former, as it is well-curated and stable.
It provides us mostly with hypernomy (or “is a”)
relations. Notoriously, these can contain rather ar-
cane categories; (3) shows this information for the
lexical entry for “Rottweiler” with the less com-
mon categories (such as placental or chordate) left
out.

(3)
[
Rottweiler
kt/ont/hyp : shepherd dog|working dog|dog|...

]
An additional, but with 509 entries compared to
the over 200k entries of WORDNET much smaller
information resource is the set of feature norms of
McRae et al. (2005), a collection of attributes typ-
ically associated with a given object. (We use the
version prepared by Silberer et al. (2013), which is
filtered for being backed up with visual evidence.)

This resource does not contain an entry for Rot-
tweiler, but one for dog, which is shown in (4).

1(Larsson, 2015) develops this intension/extension dis-
tinction in more detail for his formalisation.

2http://conceptnet5.media.mit.edu
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(4)



dog
kt/ont/isa : animal|mammal
kt/ont/properties :

anatomy/has : mouth, head, whiskers,
claws, jaws, neck, snout, tail, 4 legs, teeth,
eyes, nose, fur, ears, paws, feet, tongue
behaviour : walks, runs, eats
colour patterns : grey, black, brown, white
diet : drinks water




We have explored two other kinds of automatically
acquired lexical relations, but postpone their de-
scription until we have described the data sets that
we used for our implementation.

5 Composition

5.1 Visual/Referential know-how
In the Kennington and Schlangen (2015) ap-
proach, composition of visual word meanings into
phrase meanings is governed by rules that are
tied to syntactic constructions. In the following,
we only use simple multiplicative composition for
nominal constructions:

[[[nomw1, . . . , wk]]]
W = [[NOM]]W [[w1, . . . , wk]]

W =

◦/N ([[w1]]
W , . . . , [[wk]]

W ) (3)
where ◦/N is defined as
◦/N ([[w1]]

W , . . . , [[wk]]
W ) = P◦(I|w1, . . . , wk)

with P◦(I = i|w1, . . . , wk) =

1

Z
(P (I = i|w1) ∗ · · · ∗ P (I = i|wk)) for i ∈ I (4)

(Z takes care that the result is normalized over all
candidate objects.)

To arrive at the desired extension of a full re-
ferring expression—an individual object, in our
case—, one additional element is needed, and this
is contributed by the determiner. For uniquely re-
ferring expressions (“the red cross”), what is re-
quired is to pick the most likely candidate from
the distribution:

[[the]] = λx. argmax
Dom(x)

x (5)

[[[the] [nomw1, . . . , wk]]]
W =

argmax
i∈W

[ [[[nomw1, . . . , wk]]]
W ] (6)

5.2 Taxonomic/Ontological know-that
Composition of the ontological information is less
fully developed at the moment. We can describe
the requirements, though. For a phrase like “the
black dog”, we would want the general termino-
logical knowledge encoded in (4) (“a dog is an an-
imal, and (typically) is grey or brown or . . . ”) to be
specialised to this particular instance (“this dog is
an animal . . . ”) and the disjunctive attribute infor-
mation to be restricted (“. . . and it is black”). This

corresponds to the distinction between ‘termino-
logical axioms’ in the so-called TBox and ‘asser-
tional axioms’ in the ABox in Description Logic
(Krötzsch et al., 2014), which should also have
the necessary expressiveness to realise this com-
position process.

6 Interaction

The final component is the actual meta-linguistic
interaction that takes as topic the adequacy of
the predictions made by the other components.
As, unlike in distributional semantics or in ap-
proaches to language/image matching using deep
learning approaches (e.g., (Hu et al., 2016; Mao
et al., 2016)), we specify the composition process
explicitly, we have access to all its intermediate
steps. We can hence provide justifications for ob-
ject selection decisions that can adress the individ-
ual words as well as their composition. This will
be described in more detail in the next section.

7 Implementation

7.1 Learning Visual Meanings
The visual classifiers are trained on large sets
of images that are segmented into objects, for
which referring expressions exist. This is de-
scribed in more detail for a static recognition task
in (Schlangen et al., 2016). We outline the process
here, as the trained models form the basis for the
interaction, which is the contribution of this paper.

One dataset is the SAIAPR/ReferIt set. It con-
tains of 20k images with a tourism theme (Grub-
inger et al., 2006) for which object segmentations
(Escalante et al., 2010) and, for these objects, re-
ferring expressions are available (120k altogether;
Kazemzadeh et al. (2014)) . The second dataset
is based on the “Microsoft Common Objects in
Context” collection (Lin et al., 2014), which con-
tains over 300k images with object segmentations
(of objects from 80 pre-specified categories), ob-
ject labels, and image captions. This has also been
augmented with referring expressions by the same
group as (Kazemzadeh et al., 2014), in as yet un-
published work (the authors provided us with this
data on request). For evaluation, we downloaded
20k images from those synsets covered in Ima-
geNet (Deng et al., 2009) for which object seg-
mentations were available in ImageNet.

As representations of the images we used the
final fully-connected layer before the classifica-
tion layer of a deep convolutional neural net-
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work, “GoogLeNet” (Szegedy et al., 2015), that
was trained on data from the Large Scale Visual
Recognition Challenge 2014 (ILSVRC2014) from
the ImageNet corpus (Deng et al., 2009) to extract
features, to give us a 1024 dimensional representa-
tion of the region. We augment this with 7 features
that encode information about the region relative
to the image: the (relative) coordinates of two cor-
ners, its (relative) area, distance to the center, and
orientation of the image. The full representation
hence is a vector of 1031 features.

In the training process then, each word occur-
ring in the training part of the referring expres-
sion collection is paired with the region it de-
scribes (and with 5 randomly selected regions for
which this word never ocurrs in the description) to
train a logistic regression classifier. Here, we use
the classifiers trained on the combination of the
two datasets, which yields models for 933 words.
As shown in (Schlangen et al., 2016), this model
reaches accuracy on a static visual reference reso-
lution task that is at the state of the art of end-to-
end deep learning models. Our focus here, how-
ever, is on the use of these models in interaction,
which we turn to next.

7.2 Interacting with Semantics
To get an impression of whether interaction
(“meaning negotiation”) can improve not only per-
formance of the system but also the impression of
considered language use, we implemented a sim-
ple dialogue system that uses these models. We
interfaced it with a popular chat tool,3 so that in-
teractions can be done remotely.4

Together with a simple dialogue logic that han-
dles misunderstandings and state updates (Larsson
and Traum, 2000), we implemented the following
commands (each accessible through a variety of
formulations, only one of which we give here):

• draw a new card, which presents a new im-
age with a natural scene to the user, with the
candidate objects (for which manual segmen-
tations are available) outlined.

• draw a new collage, which presents a collage
consisting of 6 sub-images that each contain
a single object; the understanding here is that

3Slack, http://www.slack.com
4By the time of the conference, we will release all code

as open-source. We will also provide a publicly accessible
installation of the system and will use it to collect more labels
from users, and to learn online from them.

User: get a new collage men
System: Ok.

U: Find the man with the book
S: Let me see. Did you mean this?

U: yes
S: Thanks!
U: explain
S: Okidoki.

S: 0 is best for “man”
S: 5 is best for “book”
S: Overal best: 5
S: Rank of region 5 for “man”: 4
S: Rank of region 5 for “book”: 1

Figure 2: Example Interaction II Reference can-
didates outlined in red and without label; selected
candidates with numeric label.
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User: what do you associate with trees?
System: palm, church, tree, house, foun-
tain, beach, grass, statue, road
U: what looks similar to trees?
S: tree, plants, leaves, grassy, bushes
U: what looks similar to bicycle?
S: bike, rider, four, biker

Figure 3: Example Interaction III

the system “sees” the same sub-images, but
not necessarily in the same layout.

• find X (e.g., “find the person in the back-
ground on the left”), to which the system re-
sponds by outlining its selection and asking
whether this selection is correct.

• explain, which asks for explanation of the se-
lection decision, which the system provides
by listing what fits best to each word indi-
vidually, and then how the selection is com-
posed.

• what looks similar to X?; this gives indi-
rect information about the visual classifica-
tion that the system has learned, as described
below.

• what do you associate with X?, which simi-
larly gives information about the learning sit-
uation, as also described below.

• X is (not) Y (e.g., “this is not a boat”, or “3
is not black”), which adds this information to
the set of labels, which can then be used for
adapting the classifiers.

Information about what looks similar is com-
puted as follows: We randomly select 2000 im-
age regions from a held out set and run all word
classifiers on them. This results in 2000 responses
(probabilities of fit) for each word, or in other
words a 2000-dimensional vector that represents
the reactions of this word-classifier to the sample
objects. Similarity can then be computed in the
usual way as a relation between vectors (we use
the cosine); but the resulting type of similarity is a
visual one. (More details and evaluations will be
given elsewhere.)

The associative information is compiled by
computing pointwise mutual information between

words ocurring in descriptions of objects within
the same scene. This brings objects that often oc-
cur together in the same image (such as houses and
roads) together.

So far, we have run informal tests during de-
velopment of the system. In one such test with a
naive user, the user interacted for 30 minutes and
added more than 40 facts in this time. In a post-
experiment questionnaire, they ranked the system
highly for the interest that the interactions gener-
ated, and they indicated that the interaction helped
them form hypotheses about the word meanings
learned by the system, better than looking at ex-
amples of successful and unsuccessful reference
resolutions would have. More formal and compre-
hensive testing is of course still required.

8 Conclusions

We have outlined a model of grounded semantics
that combines perceptual grounding with ontolog-
ical grounding. This model serves as the basis of
a dialogue system that can play a simple reference
game, and can provide justifications for the deci-
sions it makes, and accept corrections.

The visual-perceptual part of the model is
fairly well-developed, and has been shown else-
where to achieve good accuracy on an offline task
(Schlangen et al., 2016), and has shown some
promise as a bidirectional model that can also
be used for generation (Zarrieß and Schlangen,
2016). Based on the preliminary tests reported
here, embedding it in an interaction seems promis-
ing. Much still remains to be done, however. First,
the way how what we call the lexical ‘know-how’
here and the ‘know-that’ is combined needs to be
more fully formalised, and the reasoning this re-
quires and enables must be described. Second, the
taxonomic and ontological knowledge should also
be acquired in interaction and be negotiable in in-
teraction. The implementation should form a good
basis for making these extensions.
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