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Abstract

We present a simple puzzle-playing inter-
active robot, PentoRob, which allows in-
vestigation into real-time, real-world di-
alogue. The dialogue control framework
consists of a combination of interactive
Harel statecharts and the Incremental Unit
framework. We outline its architecture
and potential use cases for dialogue and
human-robot interaction.

1 Introduction

In embodied dialogue systems research, there is a
need for simple robots that do not require heavy
mechanical maintenance or robotics experts when
developing functionality of interest. Here we
present a system to fulfil these needs: PentoRob,
a simple pick-and-place robot controlled by an in-
cremental dialogue framework.

2 PentoRob

PentoRob is a puzzle-playing robot which ma-
nipulates Pentomino pieces– see Fig. 1. Its
dialogue control consists of Harel statecharts
(Harel, 1987) and the Incremental Unit framework
(Schlangen and Skantze, 2011), and is imple-
mented with the dialogue toolkit InproTK (Bau-
mann and Schlangen, 2012). Here we describe its
components in terms of input information or In-
cremental Units (IUs), processing, and output IUs.

Hardware For the robotic arm, we use the
ShapeOko2,1 a heavy-duty 3-axis CNC machine,
which we modified with a rotatable electromag-
net, whereby its movement and magnetic field is
controlled via two Arduino boards. The sensors
are a webcam and microphone.
Incremental Speech Recognizer (ASR) We
use Google’s web-based ASR API which pack-
ages hypotheses into individual WordIUs. While

1http://www.shapeoko.com.
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Figure 1: PentoRob’s architecture.

its incremental performance is not as responsive as
more inherently incremental local systems such as
Kaldi or Sphinx-4, this does not incur great costs
for many interesting applications.
Computer Vision (CV) We use OpenCV in
a Python module to track objects in the cam-
era’s view. This information is relayed to In-
proTK from Python via the Robotics Service Bus
(RSB),2 which outputs IDs and positions of ob-
jects detected along with their low-level features
(e.g., RGB/HSV values, x,y coordinates, number
of edges, etc.), converting these into SceneIUs
which the reference resolution module consumes
and the Robot State Machine uses for obtaining
the positions of objects it plans to grab.
Reference resolution (WAC) The reference
resolution component consists of a Words
As Classifiers (WAC) model (Kennington and
Schlangen, 2015) trained on real-world objects
using low-level vision features from SceneIUs.

2https://code.cor-lab.de/projects/rsb.
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Figure 2: PentoRob’s Interactive Statechart with two parallel, concurrent states

During application, as a referring expression is
recognised, each classifier for the words in the ex-
pression are applied to the puzzle pieces in view,
which after normalisation, results in a probability
distribution over pieces.

User and Robot State Machines For dialogue
control, we use an Interactive Statechart– see
Fig. 2. Rather than comprising a single dialogue
state, there are concurrent states for each agent in
the interaction with their own variables. The User
State Machine has access to the estimated current
user goal UserGoal and a strength-of-evidence
function Ev(UserGoal), both of which can be
defined by the designer. In our domain UserGoal
is the taking of the most likely object according
to WAC’s output distribution given the utterance
u so far and the Ev function as the probability
value of the highest ranked object in WAC’s distri-
bution over its second highest rank. If UserGoal
is changed or instantiated, a new ActionRequestIU
is made available in its right buffer with the goal.

The Robot State Machine gets access to its
transition conditions involving the user through
the ActionRequestIUs. Through a simple plan-
ning function, a number of ActionIUs are cued
to achieve the goal. It sends these as RSB mes-
sages to the PentoRob control module and once
confirmed, via RSB, that the action has begun, the
ActionIU is committed. For estimation of its own
state, the robot state has a strength-of-evidence
functionEv(RobotGoal) defined by the designer.

PentoRob control module The module control-
ling the robotic actuation of the ShapeOKO arm is
a Python module with an Arduino board G-code
interface. This sends RSB feedback messages to
the Robot State Machine to the effect that actions
have been successful or unsuccessful.

3 Use cases

We are currently experimenting with achieving
more fluidity for grounding behaviour in human-
robot interaction. The statechart in Fig. 2 has
parameters δ and ε which are thresholds for the
Robot and User that must be reached by the
Ev functions to show sufficient evidence of each
agent’s goal. Early results show that lower thresh-
olds allow more fluid grounding behaviour, while
higher thresholds are ‘safer’ for task success. We
are planning a series of related experiments. Other
areas where our setup could be used is learning
grounded semantics for verbs.
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