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Abstract

Non-cooperative dialogue capabilities
have been identified as important in a
variety of application areas, including ed-
ucation, military operations, video games,
police investigation and healthcare. In
prior work, it was shown how agents can
learn to use explicit manipulation moves
in dialogue (e.g. “I really need wheat”)
to manipulate adversaries in a simple
trading game. The adversaries had a very
simple opponent model. In this paper
we implement a more complex opponent
model for adversaries, we now model all
trading dialogue moves as affecting the
adversary’s opponent model, and we work
in a more complex game setting: Catan.
Here we show that (even in such a non-
stationary environment) agents can learn
to be legitimately persuasive (“the good”)
or deceitful (“the bad”). We achieve
up to 11% higher success rates than a
reasonable hand-crafted trading dialogue
strategy (“the ugly”). We also present a
novel way of encoding the state space
for Reinforcement Learning of trading
dialogues that reduces the state-space size
to 0.005% of the original, and so reduces
training times dramatically.

1 Previous work

Recently it has been demonstrated that when given
the ability to perform both cooperative and non-
cooperative / manipulative dialogue moves, a di-
alogue agent can learn to bluff and to lie during
trading dialogues so as to win games more often,
under various conditions such as risking penalties
for being caught in deception — against a variety
of adversaries (Efstathiou and Lemon, 2014b; Ef-
stathiou and Lemon, 2014a). Some of the adver-
saries (which are computer programs, not humans)
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could detect manipulation (with increasing proba-
bility as more manipulation moves occurred), but
only had a simple opponent model which would
try to estimate the preferences of the player agent.
Furthermore, only specific moves (e.g. “I really
need sheep”) affected the opponent model, and
the setting was a simple 3-resource card-trading
game. In this paper we model a/l/ trading dialogue
moves as having effects on the adversary’s oppo-
nent model (i.e. “I will give you sheep for wheat”
means that the adversary believes that the player
needs wheat and doesn’t need sheep), and we work
in the more complex setting of the Catan game
(Afantenos et al., 2012).

2 Introduction

Work on automated conversational systems has
been focused on cooperative dialogue, where a di-
alogue system’s core goal is to assist humans in
their tasks such as buying airline tickets (Walker
et al., 2001) or finding a restaurant (Young et
al., 2010). However, non-cooperative dialogues,
where an agent may act to satisfy its own goals
rather than those of other participants, are also
of practical and theoretical interest (Georgila and
Traum, 2011), and the game-theoretic underpin-
nings of non-Gricean behaviour have been inves-
tigated (Asher and Lascarides, 2008). For exam-
ple, it may be useful for a dialogue agent not to be
fully cooperative when trying to gather informa-
tion from a human, or when trying to persuade, ar-
gue, or debate, or when trying to sell something, or
when trying to detect illegal activity, or in the area
of believable characters in video games and edu-
cational simulations (Georgila and Traum, 2011;
Shim and Arkin, 2013). Another arena in which
non-cooperative dialogue behaviour is desirable is
in negotiation (Traum, 2008), where hiding infor-
mation (and even outright lying) can be advanta-
geous. Dennett (Dennett, 1997) argues that a de-
ception capability is required for higher-order in-
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tentionality in AL

Machine learning methods have been used to
automatically optimise cooperative dialogue man-
agement - i.e. the decision of what dialogue move
to make next in a conversation, in order to max-
imise an agent’s overall long-term expected util-
ity, which is usually defined in terms of meet-
ing a user’s goals (Young et al., 2010; Rieser and
Lemon, 2011). These approaches use Reinforce-
ment Learning with reward functions that give
positive feedback to the agent only when it meets
the user’s goals. This work has shown that ro-
bust and efficient dialogue management strategies
can be learned, but until (Efstathiou and Lemon,
2014b), has only addressed the case of coopera-
tive dialogue.

2.1 Corpus analysis

An example of the type of non-cooperative dia-
logue behaviour which we are generating in this
work is given by our (dishonest) trading player
agent A in the following dialogue:

Al: “I will give you a wheat and I need 2 clay”[A
lies - it does not need clay but it needs wheat]

B1: “No”

A2: “T’ll give you a rock and I need a clay”[A lies
again and it actually needs rocks too, but it does
not have any rocks to give]

B2: “No”

A3: “T’ll give you a clay and I need a wheat

B3: “Yes”

Here, B is deceived into providing the wheat
that A actually needs, because B believes that A
needs clay (A asked for it twice) rather than wheat
and rock (that it offered). Similar human be-
haviour can be observed in the Catan game cor-
pus (Afantenos et al., 2012): a set of on-line trad-
ing dialogues between humans playing Settlers of
Catan. We analysed a set of 32 logged and an-
notated games, which correspond to 2512 trading
negotiation turns. We looked for explicit lies, of
the form: Player offers to give resource X (possi-
bly for Y) but does not hold resource X - such as in
turn A2 in the above example.

11 turns out of 2512 were lies of this type. Since
this corpus was not collected with expert players,
we expect the number to be larger for more expe-
rienced negotiators. Other lies such as asking for
a resource that is not really wanted, cannot be de-

tected in the corpus, since the player’s intention
would need to be known.

2.2 Non-cooperative dialogues

Our trading dialogues are linguistically coop-
erative (according to the Cooperative Principle
(Grice, 1975)) since their linguistic meaning is
clear from both sides and successful information
exchange occurs. Non-linguistically though they
are non-cooperative, since they they aim for per-
sonal goals. Hence they violate Attardo’s Per-
locutionary Cooperative Principle (PCP) (Attardo,
1997). In the work below, the honest player agent
proposes only sincere trades. It offers resources
that are available and it asks for resources that it
really needs. Hence it is learning to manipulate
through legitimate persuasion (Dillard and Pfau,
2002; O‘Keefe, 2002) and without any negative
consequences. On the other hand, our dishonest
player (see below) proposes false trades too, offers
resources that are not available, and can ask for re-
sources that it does not need. In other words, it can
learn to manipulate based on lies and deception.
We will show that both of the player agents can
learn how to manipulate their adversaries through
different but equally successful policies, by be-
ing cooperative on the locutionary level and non-
cooperative on the perlocutionary level. In addi-
tion, we will present a hand-crafted naive agent
who -like the honest player- is sincere, but does
not learn how to use manipulation. In other words,
it does not take into consideration at all the ‘side
effects’ of its trading proposals, and we show that
its performance is significantly lower than that of
the two manipulative players.

2.3 Structure of the paper

We initially present the trading game “Catan”
(section 3) and describe the version that we use
for our experiments. All of the actions (trading
proposals) that we use along with their manipu-
lation mechanisms are presented and explained in
detail. Section 4 presents the adversary and op-
ponent model that we employ. We then propose
a novel way of encoding (compressing) the state
space for Reinforcement Learning (RL) with a tab-
ular representation in Section 5, which reduces the
training times dramatically. Then we present two
Reinforcement Learning Agents (RLA) in Section
6 who -through honesty (“the good”) and dishon-
esty (“the bad”)- successfully learn how to use
communicative manipulation (with every normal
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trading proposal). In Section 6.3 we investigate
players without manipulation. Section 7 presents
our experiments and detailed results are presented
in Section 8.

3 The Trading Game “Catan”

To investigate non-cooperative dialogues in a con-
trolled setting we used a 2-player version of the
board game “Catan”, which is a complex, sequen-
tial, non-zero-sum game with imperfect informa-
tion. We call the 2 players the “adversary” and the
“Reinforcement learning agent” (RLA). We also
created a “hand-crafted agent” (HCA) for compar-
ison. We assume that the adversary (see section
4) is affected by all the trading proposals of the
learning agents, in such as way that it tries to stop
the learning agents from getting the resources that
they say they need. Intuitively, this is a basic as-
pect of adversarial behaviour.

The RLA or the HCA proposes trades to the ad-
versary sequentially and tries to reach a goal num-
ber of resources (in the case of a city: 3 rocks
and 2 wheat). There are four different goals that
can be achieved in the normal “Catan” game: to
build a road, a city, a settlement or buy a develop-
ment card. Our RLA has also learned how to suc-
cessfully trade in order to achieve all those goals
but this paper is based on the example case of the
city. There are five different resources to trade
and the adversary only responds by either saying
“Yes” or “No” to accept or reject the trade respec-
tively. Currently we assume that the adversary has
all of the resources available to give so it is up to
the RLA or the HCA to use a successful strategy
that will allow it to reach its goal. The learning
agents start the game with a random number of
resources (up to 7 of each resource) and there-
fore there are cases where the initial number of
resources is insufficient to eventually reach their
goal. The agents still learn how to get as close to
the goal as possible (due to the reward function,
see section 6).

3.1 Actions (Trading Proposals)

Trade occurs through trading proposals that may
lead to acceptance or rejection from the adversary,
and have deterministic and stochastic effects. We
will first discuss the action’s stochastic effect, that
is whether or not the trade will be successful. In an
agent’s proposal (turn) only one ‘give 1-for-1’ or
‘give 1-for-2’ trading proposal may occur, or noth-

ing (41 actions in total for the case of the dishonest
RLA):
1. I will do nothing

2. I will give you a wheat and I need a timber

3. I'will give you a wheat and I need a rock

40. I will give you a brick and I need two rocks

41. I will give you a brick and I need two sheep

In contrast to the case of the dishonest RLA, the
cases of the honest RLA and the naive HCA con-
sist of 17 of the above actions because they ask
only for goal resources (rock and wheat). The ad-
versary responds by either saying “Yes” or “No”
to accept or reject the learning agent’s proposals.
Each of these actions affects the adversary’s oppo-
nent model as described below.

3.2 Manipulation through trading actions

We assume that all of the above trading propos-
als (apart from “I will do nothing”) affect the op-
ponent model of the adversary. Hence a trading
proposal may or may not lead to a trade (the ac-
tion’s stochastic effect) as we saw, but it will def-
initely affect (action’s deterministic effect) the ad-
versary’s belief model. Here we will discuss each
action’s deterministic effect. Each of the trading
proposals consists of two parts: the offered re-
source and the wanted one(s). The adversary’s
opponent model is affected by both of these parts
— for example the more often the agent insists on
asking for wheat, the less the adversary will be ea-
ger to give it. Hence the agents need to learn how
to appropriately use this effect in order to success-
fully manipulate the adversary and reach the goal
number of resources.

4 The Adversary and its Opponent
model

The adversary remains the same in all of our ex-
periments. However other adversary and opponent
models are clearly possible. We created this as a
simple implementation of the intuition that a ratio-
nal adversary will act so as to hinder other players
in respect of their expressed preferences.
Opponent models (OM) with hindering abili-
ties have previously been shown to be important
in games such as the “Machiavelli” card game
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(Bergsma, 2005). Hence our adversary is us-
ing an opponent model that is based on hinder-
ing the LA’s preferences, as the LA expresses its
preferences through trading proposals and this is
the only information that the adversary receives.
Since opponent modeling is focused on using
knowledge about other agents to improve perfor-
mance, the adversary therefore hinders the LA’s
announced preferences (trading proposals).

Our model is inspired by this approach to OM
and uses knowledge (from the LA’s announce-
ments) in an effort to improve its performance.
Unlike the OM (Carmel and Markovitch, 1993;
Iida et al., 1993a; Iida et al., 1993b) or the PrOM
search model of (Donkers et al., 2001) though, it
does not explicitly predict the moves of the LA,
but the history of those moves are used to direct
the adversary’s future responses.

The adversary therefore uses an opponent
model which directs its responses to the other
agent’s (RLA or HCA) trading proposals. Every
time that an agent utters a trading proposal, prob-
abilities of the adversary giving resource types
change accordingly (details below), and therefore
the adversary becomes more or less eager to give
some resources than others. It does this because
it tries to hinder the other players from acquiring
the resources that they ask for. For instance, if
an agent insists on asking only for wheat then the
probability that it will be given becomes very low
(the adversary considers it now as valuable), but
the relative probability that it will get one of the
other four resources increases.

However, the adversary also takes into consid-
eration what the agent offers to give, so the more
an agent keeps offering a resource the more likely
becomes for the adversary to give it too (it consid-
ers the resource as less valuable).

In detail, at the beginning of each trading phase
the probabilities that represent the adversary’s
willingness to give each of the resource types start
at 50%. When the agent asks for a resource then
the probability to give that particular resource is
reduced by either 8% or 12% (if it is a ‘give 1-for-
1’ or ‘give 1-for-2’ trade proposal respectively),
and the probability of giving the four other re-
source types increases accordingly. The probabil-
ity of giving the offered resource also increases by
8%. We experimented with a variety of different
increments, and very similar results were obtained
to those presented below, so there is nothing par-

ticularly hinges on the 8% figure.

Due to this opponent model, it is possible to ma-
nipulate the adversary into eventually giving re-
sources that are needed, if the right trading pro-
posals are made.

5 The State Encoding Mechanism

To overcome issues related to long training times
and high memory demands, we implemented a
state encoding mechanism that automatically con-
verts all of our trading game states to a signifi-
cantly smaller number states in a compressed rep-
resentation. The new state representation takes
into consideration the distance from goal and the
availability of the resource, as well as its qual-
ity (goal or non-goal resource) and uses 7 differ-
ent characters. The agent’s state consists of the
numbers of the five resources that it currently has
available. In the case of the city, it needs wheat
and rocks. That means two out of five resources
are goal resources and therefore they can be rep-
resented by ‘G’ (goal) when their number is equal
to the goal amount, ‘N’ (null) when their number
is 0, ‘M’ (more) when their number is more than
the goal-quantity, and ‘1’ or ‘2’ when the distance
from the goal quantity is 1 or 2 respectively. The
3 non-goal resources are represented by ‘Z’ (zero)
when they are 0 and ‘A’ (available) when they are
more than 0.

For example, the state (1,4,3,0,2) would be
encoded to (1, A,G,Z, A) . The numeric state
space of our problem has 8§ x 8 x 8 x 8 x 8
(=32,768) states that are encoded to only 4 x 2 x 5
x 2 x 2 (=160) states. This is reduced to 0.005%
of the original size of the state space. With this
method and despite the fact that the representa-
tion still remains tabular, in all of our experiments
3 million training games required only around 10
minutes to finalize. The performances were very
successful too as the logic is still based on the pre-
cision of the RL tabular representation.

6 The Reinforcement Learning Agents
(RLA)

As we discussed earlier the game state is repre-
sented by the RLA’s encoded set of resources (see
section 5). The RLA plays the game and learns
while perceiving only its own set of resources. It
is aware of its winning condition in as much as
it experiences a large final reward when reaching
this state. It learns how to achieve the goal state
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through trial-and-error exploration while playing
repeated games. Each game consists of up to 7
trading proposals, but nothing particularly hinges
upon this number — we have experimented with
a number of different length constraints, and ob-
tained similar results. The agent is modelled as
a Markov Decision Process (Sutton and Barto,
1998): it observes states, selects actions accord-
ing to a policy, transitions to a new state (due to
the adversary’s response), and receives rewards at
the end of each game. This reward is then used to
update the policy followed by the agent using the
SARSA(A) algorithm.

As we see in Figure 1, it learns to win 96.8% of
the time (not 100% due to the cases with insuffi-
cient initial resources).

6.1 Reward function

The reward function used in all the experiments
takes into consideration the number of trading pro-
posals made and the distance from the goal, as
well as trading success. In detail, the reward func-
tion that is used is: + 10,000 (if trading successful)
—(1,000* proposals) —(1,000* distance).

6.2 Training parameters

The agents were trained using a custom
SARSA(A) learning method (Sutton and Barto,
1998) with an initial exploration rate of 0.2, which
gradually decays to 0, and a learning rate o of 1,
which also gradually decays to O by the end of
the training phase. After experimenting with the
learning parameters we found that with A equal to
0.9 and ~ equal to 0.9 we obtain the best results
for our problem and therefore these values have
been used in all of the experiments that follow.

6.3 Initial cases with no manipulation /
cooperative adversary

Before we examine the cases with manipulation
and the adversary’s opponent model, we first ex-
plore the case of learning a trading policy for
adversaries that do not have an opponent model
and thus do not try to hinder the learning agent.
This adversary always accepts an agent’s trading
proposal, and so this serves as an initial proof-
of-concept of the extent to which the game is
winnable by the learning agents if the adversary
is being fully cooperative.

Here the RLA learned how to successfully trade
in the full version of the “Catan” game for every
goal case. These include building a road, a city, a

settlement, or a development card. The different
goals are different numbers and types of resources
that the RLA needs to gather in order to win.

The RLA has located a successful policy for
each one of those cases, showing that the cooper-
ative version of the game is solvable as an MDP
problem. It has identified and taken advantage
of the power of the ‘give 1-for-2’ over the ‘give
1-for-1’ trades and therefore it uses them much
more frequently (with a ratio of around 75% over
25% for the ‘give 1-for-1’). The adversary that
it plays against does not have an opponent model,
the learning agent’s trading proposals do not affect
it, and the adversary always accepts them. Hence
we initially show that RL is capable of success-
fully learning how to trade in this version of the
game (with every different goal) while learning to
also exploit the ‘give 1-for-2’ trading proposals.

Average reward-victory per training cycle

Average reward-victory

Training cycle

=

Figure 1: Learning Agent’s reward-victory graph
in 500 thousand training games of Initial Experi-
ment: building a city, cooperative adversary.

6.4 The Honest Reinforcement Learning
Agent - “The Good”

The honest RLA only asks for resources that it re-
ally needs (therefore it is restricted to 17 out of
the 41 actions). It is a sincere RLA and it only
proposes a trade after it has checked that the of-
fered resource is indeed available. However, the
fact that it still learns how to successfully ma-
nipulate (legitimately persuade) the adversary un-
der those honest constraints, and in a continuous
non-stationary MDP environment due to the ever-
changing adversarial belief model (i.e. the envi-
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ronment’s dynamics can change after an action is
selected), makes the outcome surprising. In the
experiments that follow we will see that it locates
a honest way of persuading its adversary.

6.5 The Dishonest Reinforcement Learning
Agent - “The Bad”

The dishonest RLA can ask for resources that it
does not need (therefore it uses all of the 41 ac-
tions). It can also propose trades without check-
ing if the offered resource is available. If such a
deceitful trading proposal gets accepted by the ad-
versary, the RLA then refuses to actually make the
trade. Thus its learning process is a harder Re-
inforcement Learning task than that of the hon-
est RLA (since it has more actions). However,
it still learns how to successfully manipulate (de-
ceive) the adversary under those dishonest con-
ditions, and in a continuous non-stationary MDP
environment due to the ever-changing adversarial
opponent model as above, resulting on a surpris-
ingly equal performance with that of the honest
RLA. As we will see in the experiments that fol-
low, its strategy is based on the use of lies.

6.6 The Naive Hand-Crafted Learning Agent
- “The Ugly”

This agent is not a learning agent but instead uses
a hand-crafted naive strategy. In detail, it uses a
reasonable way of proposing trades by checking
the availability of the resources that it does not
need and offers them for those that it needs in an
equi-probable manner. The reason that we call it
naive (as well as “ugly”) is because it does not
take into consideration the fact that its trading pro-
posals affect the adversary’s opponent model and
-instead of learning that- it just keeps following
the same naive rule-based strategy. This agent is a
baseline case and despite the fact that its strategy
is quite sensible, we show that it is significantly
worse than that of the two manipulative RLAs.

7 Experiments

All agents are compared in respect of their win
rates, which is the percentage of trading games
in which they achieve their goal (in this case, to
get the resources required to build a city). The
y-axes of the graphs below represent this quan-
tity (which we also refer to as “success rate” or
“reward-victory”).

7.1 Naive HCA vs. Adversary: Experiment 1
(Baseline)

The naive HCA played 3 million games against
the Adversary in Experiment 1. This is our base-
line case for comparison. The agent’s trading pro-
posals affect the opponent model of the adversary
but the agent is unaware of that and therefore it
does nothing about it. It just keeps playing the
game based on the naive but reasonable strategy
discussed in Section 6.6.

7.2 Honest RLA vs. Adversary: Experiment
2

In this experiment we trained the honest RLA
against the adversary in 3 million games. The
RLA’s trading proposals affect the opponent
model of the adversary and we show that, despite
the honest constraints, the honest RLA can learn
how to successfully manipulate the adversary. Ul-
timately we show that the performance is better
than that of the baseline case in Experiment 1. The
performance of the Honest RLA before training
(i.e. random action selection) is about 21%.

7.3 Dishonest RLA vs. Adversary:
Experiment 3

In this experiment we trained the dishonest RLA
against the adversary in 3 million games. The
RLA’s trading proposals again affect the opponent
model of the adversary and we show that the dis-
honest RLA can learn how to successfully manip-
ulate it. As above, we show that the performance is
better than that of the baseline case in Experiment
1. Furthermore, we explore how well this deceit-
ful RLA performs compared to the previous hon-
est one, who legitimately persuades. The perfor-
mance of the Dishonest RLA before training (i.e.
random action selection) is about 4%.

8 Results

The RLAs were trained on 3 million games against
the Adversary. Their policies were then tested in
20,000 games. The HCA played 3 million games
too against the same adversary. As there was no
learning, no testing games were played because
its performance remained stable throughout the 3
million games as we will see below.

8.1 Naive HCA: Experiment 1

The naive HCA has a win rate of only 25.3%. Its
strategy focuses on 50% of the time asking for
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wheat by offering each one of its available un-
wanted resources in turn, or 50% of the time ask-
ing for rocks using the same technique.

8.2 Honest RLA: Experiment 2

The honest RLA scored a winning performance of
35.8%, see Figure 2, starting from 21.1% (which
is the performance of random action selection).
Its strategy focuses on asking initially for either
wheat, until it gathers rocks, or for rocks until it
gathers wheat that needs to build a city (2 wheat
and 3 rocks are required). It also mainly of-
fers resources that it needs (goal ones) -and has
available- instead of non-goal ones as it will be-
come then easier to get them back. This hon-
est persuasive strategy proved to be very effective
against the adversarial hindering policy.

8.3 Dishonest RLA: Experiment 3

The dishonest RLA scored a winning performance
of 36.2% after 3-million training games, and may
improve with further training (see Figure 3), start-
ing from only 4.2%. That clearly shows that
its task was much harder than that of the honest
RLA in Experiment 2, who started from 21.1%,
as it has to understand how to effectively manipu-
late through all of the 41 actions (rather than the
17 honest actions which ask for goal resources
only). Nevertheless its very effective learned strat-
egy mainly focuses on the use of lies. It asks es-
pecially for resources that it does not need only
for the sake of manipulation (deception) and it of-
fers resources that it does not have for the same
purpose. The type of the offered resources in this
case are mainly goal ones again (as above) and the
fact that this RLA can lie about their availability
makes such offers even more frequent than before.
This dishonest strategy proved to be equally effec-
tive with that of the honest RLA though.

Both of the RLAs (as we saw in Experiment 2
too) managed to learn successful strategies despite
the fact that there are cases where the initial re-
sources are insufficient to reach the goal within 7
proposals. They both realized again (as in our Ini-
tial Experiment, section 6.3) the power of the ‘give
1-for-2’ over the ‘give 1 for-1’ trades and they
used them more often. Hence, in some cases they
manage to approach their goals even with insuffi-
cient initial resources. By comparing the two ma-
nipulative cases to that of Experiment 1 we show
that manipulation (through legitimate persuasion
[Experiment 2] or deception [Experiment 3]) can

be successfully learned by our RLAs and outper-
form by 11% a naive but reasonable strategy.

Average reward-victory per training cycle

Figure 2: Honest RLA’s reward-victory graph in
3 million training games (experiment 2). Yellow
horizontal line = Baseline performance.

Average reward-victory per training cycle

Figure 3: Dishonest RLA’s reward-victory graph
in 3 million training games (experiment 3). Yellow
horizontal line = Baseline performance.

9 Discussion: a Non-Stationary MDP
problem

Our Experiments 2 and 3 also show that RL is ca-
pable of learning successful policies even in the
case where the environment’s dynamics change
(maximum of 7 times per game) and each action
(trading proposal) has a stochastic effect (that of
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] Exp. H Learning Agent policy Adversary policy H Agent’s wins
Initial || SARSA + Honest actions Accepts every trade 96.8%
Random Honest actions Hinders agent’s preferences || 21%
Random Dishonest actions Hinders agent’s preferences || 4%
1 Hand-Crafted Naive Honest (Baseline) | Hinders agent’s preferences || 25.3%
2 SARSA + Honest actions Hinders agent’s preferences || 35.8%*
3 SARSA + Dishonest actions Hinders agent’s preferences || 36.2%*

Table 1: Performance (% wins) in 20 K testing games, after training.

baseline, p < 0.05)

a possible trade) and a deterministic effect (that
on adversary’s opponent model). Every time the
honest or dishonest RLA proposes a trade, the
opponent model of the adversary changes as we
have seen. That means the environment changes
too (as the adversary is a part of it according to
the RLA’s perspective) and therefore makes our
problem a non-stationary MDP (da Silva et al.,
2006). Despite the fact that only the RLA’s ac-
tions are responsible for those changes and so
the problem may be solved by recasting it into a
stationary one through state augmentation (Choi
et al., 2001), our case is more complex. This
is because our RLA’s actions affect the environ-
ment in two different ways (through their stochas-
tic and deterministic effects). Furthermore, the
environment (adversary) responds to trading pro-
posals based on the history of the deterministic
effects of the actions (trading proposals’ effect
on adversary’s belief) up to that point. In other
words, the same action (trade) may have differ-
ent effects due to the deterministic effects on the
environment (changes of the adversary’s opponent
model) of the actions that preceded it. There are
successful combinations between these two differ-
ent kinds of effects that the RLA has managed to
identify and learn how to effectively use, originat-
ing from the multi-dimensions (manipulative di-
mensions) of the problem. It is therefore an in-
teresting multi-dimensional non-stationary MDP
case that we have shown to be solvable by RL,
which suggests that trading proposals in dialogue
evoke non-stationary beliefs in our everyday nego-
tiations. We demonstrated that phenomenon with
the realistic assumption that the adversary’s oppo-
nent model is affected by all normal trading ac-
tions.

*= significant improvement over

10 Discussion: Discourse Studies

Our results also bring an important argument of
Van Dijk (van Dijk, 2006) to light, according to
which there is an everyday conventional inference
of dishonesty from manipulative acts. That neg-
ative effect cannot be taken for granted though
as manipulation according to Dillard and Pfau, as
well as O’Keefe (Dillard and Pfau, 2002; O‘Keefe,
2002) also occurs through legitimate persuasion.
This is what our RL work suggests too. Hence we
emphasize the significance of Attardo’s perlocu-
tionary cooperation as before.

11 Conclusion & Future Work

In this paper we implemented an opponent model
for adaptive adversaries, and modelled all trading
dialogue moves as affecting the adversary’s oppo-
nent model. We worked in the complex game set-
ting of Catan and we showed that agents can learn
to be legitimately persuasive (“the good”) or de-
ceitful (“the bad”). We achieve up to 11% higher
success-rates than a reasonable hand-crafted trad-
ing dialogue strategy (“the ugly™).

We also presented a novel way of encoding the
state space for Reinforcement Learning of trad-
ing dialogues that reduces the state-space size to
0.005% of the original, and so reduces training
times dramatically.

In future work we will further investigate com-
plex non-cooperative situations, and evaluate the
performance of such learned policies in games
with humans, by integrating this work with jSet-
tlers (Thomas and Hammond, 2002).
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