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Abstract

This work aims to learn strategic dialogue
policies which estimate the (hidden) state
of the opponent, using extensions of Par-
tially Observable Markov Decision Pro-
cesses. As a first step towards this goal,
we present results of batch Reinforcement
Learning (LSTD), which needs only 20%
of the training data needed by SARSA(N).
This result now puts us in the position to
tackle more computationally intensive par-
tially observable environments .

1 Introduction

Strategic dialogue behaviour includes cooperative
as well as non-cooperative actions and the abil-
ity to choose amongst these actions dependent on
the current context, which includes your long-term
goal and current state, as well as the goal and state
of your interaction partner (also known as the “op-
ponent”). In this research we investigate opponent
modelling for optimising strategic dialogue using
models based on Partially Observable Markov De-
cision Processes (POMDPs), following an initial
proposal by (Rieser et al., 2012). Recent work has
shown that the ability to reason about each other’s
beliefs (in terms of states and goals) using Decen-
tralised POMDPs, enables agents to evolve coop-
erative behaviour (Vogel et al., 2013a), resolve im-
plicatures (Vogel et al., 2013b), and reason about
acceptable actions towards a human collaborator
(Kamar et al., 2013). We hypothesise that this
ability will also allow us to learn strategic dialogue
policies which reason about the opponent’s state.
However, these types of extended POMDP mod-
els (and POMDPs in general) are intractable for
more complex domains and approximate models
are used in practise. Furthermore, they require ef-
ficient training algorithms to solve the underlying
POMDP. Previous work on non-collaborative dia-
logue has found that it takes about 100k of training

games to learn a policy that can beat a rule-based
opponent in a fully supervised MDP setting with
a state space size of 16k (Efstathiou and Lemon,
2014). This previous work has used a online Rein-
forcement Learning algorithm called SARSA(M).
Current research on POMDPs for statistical dia-
logue management investigates more sample effi-
cient algorithms such as GPTD (Gasic and Young,
2014), KTD (Daubigney et al., 2012) or LSPI
(Pietquin et al., 2011).

In the following, we explore a combination of
function approximation methods and offline learn-
ing, using batch Least-Squares Temporal Differ-
ence (LSTD) approximation. We evaluate this ap-
proach against previous work by (Efstathiou and
Lemon, 2014) using the same experimental setup
within a strategic trading game.

2 The Testbed Trading Game

Taikun is a 2-player, sequential, non-zero-sum
game with imperfect information designed to in-
vestigate non-cooperative dialogue in a controlled
environment (Efstathiou and Lemon, 2014). The
goal of the game is for each participant to collect
resources (Rock, Wheat and Sheep) via trading or
by random game update. In the trading phase a
player proposes a 1-for-1 trade of resources and
the other player accepts or rejects the proposed
trade. In the game update phase the environment
randomly modifies the resources of each player by
adding two or subtracting one. This information
is hidden to the other player. The setup also in-
cludes a challenging rule-based adversary which
wins 66% games against a random policy. Further
details on the adversary’s policy can be found in
(Efstathiou and Lemon, 2014). The goal state of
the Learning Agent (LA) and adversary are prede-
fined and partially overlapping, as shown in Table
1, which motivates trading.
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[ [[Wheat[Rock]Sheep]

LA |4 5 0
Adv. ||4 0 5

Table 1: Goal state for Learning Agent and Adversary

3 Experiment setup and results

We now test different parameterisations of a
sample efficient reinforcement learning algo-
rithm called Least-Squares Temporal Difference
(LSTD) (Bradtke and Barto, 1996), which is an of-
fline function approximation approach. We evalu-
ate these algorithms using the same setup as (Efs-
tathiou and Lemon, 2014), where we formulate the
problem as Markov Decision Process (MDP). The
state is represented by the LA’s set of resources
(only) and the actions are 7 different trading offers
(do nothing, trade X resource for Y resource). The
long term reward is +1000 for winning a game,
4500 for a draw and —100 for losing. We evaluate
the learnt policies on 50k test games. The results
are summarised in Table 2.

LA Policy LA |Adversary | Draws [# games
SARSA(N) [49.23%| 45.62% |5.15%| 100k
LSTD 44.5% | 51.32% |4.18%| Sk
Batch LSTD [46.31%| 50.76% |2.93%| 17k
Batch LSTD*(48.82%| 48.03% |3.05%| 20k

Table 2: Winning rates for Learning Agents (LA) trained with
different algorithms.

First experiment : LSTD learning agent. For
the first experiment we experiment with a ‘vanilla’
version of LSTD using the same state space fac-
torisation as (Efstathiou and Lemon, 2014). The
offline training data is generated by a random pol-
icy interacting against the rule-based adversary. In
this experiment, the adversary outperforms the LA
with 51.32% winning rate. The learning curve
shows that the LSTD plateaus after 5k training
games. We attribute this early convergence to-
wards a non-optimal policy to the fact that LSTD
learns from random data. In other words, since
off-line algorithms do not have the capability to
explore and exploit, the algorithms does not “see”
enough instances of the optimal policy.

Second experiment : Batch learning. In a sec-
ond experiment we use batch reinforcement learn-
ing to enhance exploitation, i.e. interleaving
a piece-wise online data collection with offline
learning (Lange et al., 2012). That is, it com-
bines the policy-search efficiency of policy iter-
ation with the data efficiency of LSTD. We start
from an initial policy (LSTD policy trained on 1k
games) interacting with our rule based adversary.

We then iterate policy learning and data collec-
tion, where we use the latest policy to generate
new training data for the next learning phase. The
results show that batch LSTD has better sample
efficiency and reaches higher performance than
vanilla LSTD but still falls behind the adversary.
We hypothesise that this is due to the insuffi-
cient representation of discriminative state fea-
tures. For example, a required resource will con-
sistently have a positive contribution to the “trade-
in” action regardless of whether its amount already
exceeds the goal.

Third experiment : Batch policy learning with
non-linear state factorisation. We now exper-
iment with a different state space factorisation to
(Efstathiou and Lemon, 2014), where we repre-
sent the distance from the goal state. In particular,
the state contains 6 x 3 binary variables, recording
each individual resource for each of the 3 types as
0/1 up to a maximum of 5 (which is the max in the
goal state). The 6th variable indicates whether the
agent holds more than 5 of a given resource. The
results for the re-factored Batch LSTD* show that
the learned policy now performs equal to the chal-
lenging rule-based adversary and reaches a similar
performance to SARSA()) after only 20k games,
rather than 100k games'.
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Figure 1: Learning curve: Reward over training
data.

4 Discussion and future work

In this paper we have shown that it is possi-
ble to learn strategic dialogue policies which can
reach a similar performance to a challenging rule-
based adversary from a (relatively) small amount
of training data (20k games). This now puts us
in the position to tackle a more challenging prob-
lem where we account for the uncertainty in adver-
sary’s state by modelling the problem as a Partially
Observable Markov Decision Process.

'In future work we will establish statistical significance
between winning rates.
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