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Abstract
We describe a method for distinguish-
ing colors in context using English color
terms. Our approach uses linguistic the-
ories of vagueness to build a cognitive
model via Bayesian rational analysis. In
particular, we formalize the likelihood that
a speaker would use a color term to de-
scribe one color but not another as a func-
tion of the background frequency of the
color term, along with the likelihood of
selecting standards in context that fit one
color and not the other. Our approach ex-
hibits the qualitative flexibility of human
color judgments and reaches ceiling per-
formance on a small evaluation corpus.

1 Introduction

A range of research across cognitive science, sum-
marized in Section 2, suggests that people negoti-
ate meanings interactively to draw useful distinc-
tions in context. This ability depends on using
words creatively, interpreting them flexibly, and
tracking the effects of utterances on the evolving
context of the conversation. We adopt a computa-
tional approach to these fundamental skills. Our
goal is to quantify them, scale them up, and eval-
uate their possible contribution to coordination of
meaning in practical dialogue systems.

Our work extends three traditions in computa-
tional linguistics. Our approach to semantic repre-
sentation builds on previous research that empha-
sizes the context dependence and interactive dy-
namics of meaning (Barker, 2002; Larsson, 2013;
Ludlow, 2014). Our approach to pragmatic rea-
soning builds on work on referring expressions
and its characterization of the problem solving in-
volved in using vague language to identify entities
uniquely in context (Kyburg and Morreau, 2000;
van Deemter, 2006). Finally, we take a perceptu-
ally grounded approach to meaning, which allows

us to use empirical methods to induce semantic
representations on a wide scale from multimodal
corpus data (Roy and Reiter, 2005; Steels and Bel-
paeme, 2005; McMahan and Stone, 2014).

We present our ideas through a case study of
the color vocabulary of English. In particular,
we study the problem solving involved in us-
ing color descriptors creatively to distinguish one
color swatch from another, similar color. In our
model, these descriptions inevitably refine the in-
terpretation of language in context. We assume
that speakers make choices to fulfill their commu-
nicative goals while reproducing common patterns
of description. Using corpus data, we are able
to quantify how representative of typical English
speakers’ behavior a particular context-dependent
semantic interpretation is.

Our model naturally exhibits many of the pref-
erences of previous work on vague descriptions.
For example, the system avoids placing thresh-
olds in small gaps (van Deemter, 2006), that is,
in regions of conceptual space that account for lit-
tle of the probability mass of possible interpreta-
tions. In such circumstances, the system prefers
more specific vocabulary, where interlocutors are
more likely to draw fine distinctions (Baumgaert-
ner et al., 2012). Our approach realizes these ef-
fects by simple and uniform decision making that
extends to multidimensional spaces and arbitrary
collections of vocabulary.

We begin the paper by describing the semantic
representation of vagueness in dialogue. Vague-
ness, we assume, is uncertainty about where to
set the threshold in context for the concept evoked
by a term. Speakers have the option to triangu-
late more precise thresholds by interactive strate-
gies such as accommodation, and this helps ex-
plain how vague descriptions can be used to refer
to objects precisely (van Deemter, 2006).

In Section 3, we describe our model of speak-
ers’ decisions in conversation. We focus on speak-
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ers that aim to distinguish one thing from another;
in these cases, we assume speakers aim to choose
a term that’s interpreted so that it fits the target and
excludes the distractor, while matching broader
patterns of language use.

We show how to combine the ideas in Section 4.
We formalize the likelihood that a speaker would
use a color term to describe one color but not an-
other as a function of the likelihood of selecting
standards to justify its application in this context,
along with the background frequency of the color
term. We describe an implementation of the for-
malism and report its the qualitative and quan-
titative behavior in Section 5. It works with a
generic lexicon of more than 800 color terms and
reaches ceiling performance in interpreting user
color descriptions in the data set of Baumgaertner
et al. (2012). While substantial additional research
is required to explore the dynamics of vagueness
in conversation, our results already suggest new
ways to apply generic models of the use of vague
language in support of sophisticated, open-ended
construction of meaning in situated dialogue.

2 The Linguistics of Vagueness

Figure 1 shows an image from a public data set
developed to study how people label images with
captions (Young et al., 2014). One user chose to
distinguish the dogs by calling one brown and the
other tan. Another distinguished the dogs by call-
ing one tan and the other white. Each used the tan
dog to refer to a different dog—yet the way each
described the other dog left no doubt about the
correct interpretation. This variability and context
dependence is characteristic of vagueness in lan-
guage. The dogs in Figure 1 are borderline cases;
there’s no clear answer about whether they are tan
or not, and speakers are free to talk of either, both,
or neither of them as tan, depending on their pur-
poses in the conversation.

In this paper, we explore the descriptive vari-
ability seen in Figure 1. How is it that speak-
ers can settle borderline cases in useful ways to
move a dialogue forward, and how can hearers rec-
ognize those decisions? We won’t consider the
interactive strategies that interlocutors can use to
confirm, negotiate or contest potentially problem-
atic descriptions, although that’s obviously crucial
for successful reference (Clark and Wilkes-Gibbs,
1986), for coordinated meaning (Steels and Bel-
paeme, 2005), and perhaps even for meaning it-

Figure 1: A brown dog and a tan one—or a tan
dog and a white one (Young et al., 2014).

self (Ludlow, 2014). And we won’t consider the
way multiple descriptions constrain one another,
as in Figure 1, although we expect to explain it
as a side-effect of holistic interpretive processing
(Stone and Webber, 1998). We see our work as a
prerequisite for the model building and data col-
lection required to address such issues.

In our view, the users of Young et al. (2014)
are using tan to name color categories. Colors are
visual sensations that vary continuously across a
space of possibilities. Color categories are clas-
sifiers that group regions in color space together
(Gärdenfors, 2000; Larsson, 2013). Color terms
in English also have another sense, not at issue in
this paper, where they refer to an underlying prop-
erty that correlates with color, as in red pen (writes
in red ink) (Kennedy and McNally, 2010).

Empirically, color categories seem to be con-
vex regions (Gärdenfors, 2000; Jäger, 2010)—in
fact, we model them as rectangular box-shaped re-
gions in hue–saturation–value (HSV) space. Thus,
color categories involve boundaries, thresholds or
standards that delimit the regions in color space
where they apply; context sensitivity can be mod-
eled as variability in the location of these bound-
aries (Kennedy, 2007). For example, when we cat-
egorize the lighter dog of Figure 1 as being distinc-
tive in its color, we must have a color category that
fits this dog but not the darker one. This category
will group together colors with a suitable interval
of yellow hues, suitable low levels of saturation,
and suitably high values on the white–black con-
tinuum. We can think of this category as one pos-
sible interpretation for the word tan. By contrast,
categorizing the darker dog of Figure 1 as distinc-
tively tan involves choosing a category with dif-
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ferent thresholds for hue, saturation and value—
thresholds that fit the color of the darker dog but
exclude that of the lighter one.

When interlocutors use vague terms in conver-
sation, they constrain the way others can use those
terms in the future (Lewis, 1979; Kyburg and Mor-
reau, 2000; Barker, 2002). For example, if we hear
one or the other dog of Figure 1 described as tan,
it constrains how we will interpret subsequent uses
of the word tan. Concretely, we might update the
perceptual classifier we associate with tan in this
context so that it fits the target dog and excludes its
alternative (Larsson, 2013). We see this as a case
of accommodation, in the sense of (Lewis, 1979).

As speakers, we often count on our interlocu-
tors to accommodate us (Thomason, 1990). We
can use vague terms confidently as long as the dis-
tinction we aim to draw with them is clear in con-
text and as long as our choice is sufficiently in line
with the normal variation in the use of the word,
and therefore uncontroversial (Thomason, 1990;
van Deemter, 2006). Such criteria seem to sup-
port the speaker’s choice in Figure 1 to describe
either dog as tan—provided the speaker provides
a complementary description of the other dog. At
the same time, if we use language in very un-
usual ways, we can expect that our interlocutor
may have difficulty understanding and may be re-
luctant to accommodate us. In other words, to use
vague language effectively, speakers must be sen-
sitive to whether their utterances update the dia-
logue context in a natural way.

A common idea in linguistics and philosophy
is that knowledge of language associates terms
with a probability distribution over categories.
This distribution characterizes speakers’ informa-
tion about the likelihood of different possible in-
terpretations for the term that could make sense
in context (Williamson, 1996; Barker, 2002; Las-
siter, 2009). In other words, vagueness amounts
to uncertainty about where to draw boundaries to
settle borderline cases.

Thus, when we need to settle borderline cases to
generate or understand utterances like the tan dog,
knowledge of meaning lets us quantify how likely
the different resolutions are. In Figure 1, for exam-
ple, knowledge of language says that tan can be in-
terpreted, with a suitable probability, through cate-
gories that pick out just the lighter dog, but that tan
can also be interpreted, with a suitable probabil-
ity, through categories that pick out just the darker

dog. The next section explains how to formalize
the reasoning involved in assessing these proba-
bilities, reviews one instantiation of this reasoning
for learning semantics, and develops another in-
stantiation for distinguishing colors in context.

3 Rational Analysis of Descriptions

Speakers can use language for a variety of pur-
poses. Their decisions of what to say thus depend
on knowledge of language, their communicative
situation, and their communicative goals. Follow-
ing Anderson (1991), rational analysis invites us
to explain an agent’s action as a good way to ad-
vance the agent’s goals given the agent’s informa-
tion. When applied to communication, this ap-
proach allows us not only to derive utterances for
systems but also to infer linguistic representations
from utterances when we know the agent’s com-
municative situation and communicative goals.

We apply this methodology to color descrip-
tions in McMahan and Stone (2014). We infer
linguistic representations from Randall Munroe’s
color corpus1 by assuming that subjects’ goals
were to say true things and match a target distri-
bution of utterances. These results are available as
our Lexicon of Uncertain Color Standards (LUX).
We describe this experiment in Section 3.1. We
continue in Section 3.2 by creating a new model
of the task of creating a distinguishing description.
Here the goal is to describe one color, exclude an-
other, and match a target distribution.

3.1 Lexicon of Uncertain Color Standards

Munroe’s corpus was gathered by presenting sub-
jects with a color patch and allowing them to
freely describe it. It’s not interactive language use,
but we use it just to model knowledge of meaning.
Like all crowdsourced data, Munroe’s methodol-
ogy sacrifices control over presentation of stimuli
and curation of subjects’ responses for sheer scale
of data collection. We work with a subset of data
involving 829 color terms elicited over 2.18M tri-
als. Each description is paired with the multiset of
color values on which subjects used it. We model
the data in HSV space, because color categories
generally differ in the Hue dimension.

LUX links color descriptions with context-
sensitive regions in HSV color space. An exam-
ple is shown in Figure 2 for the Hue dimension.

1blog.xkcd.com/2010/05/03/color-survey-results/

blog.xkcd.com/2010/05/03/color-survey-results/
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The plot shows a scaled histogram of subjects’ re-
sponses. There is a region on the Hue dimension
which subjects frequently described as yellowish
green with borderline cases on either side of it.

To capture the patterns of human responses, the
rational analysis approach directly models the un-
certainty described in Section 2. For each color
term, speakers have possible standards which can
be used to partition color space; they are unsure
which are at work at any point. For example, the
term yellowish green only fits those Hue values
which are above a minimum threshold, τLower,H (or
τL,H for short), and below a maximum threshold,
τUpper,H (or τU,H for short). We estimate the dis-
tribution of possible thresholds; they are shown as
the solid black lines in Figure 2.

In choosing to use the color description to fit
a point x in HSV space, speakers make a seman-
tic judgment which constrains the possible stan-
dards. The naturalness of this judgment is mea-
sured in part by the probability mass of possible
standards which allow the description to be used.
For example, the applicability of yellowish green
is the probability of the color value x being be-
tween the minimum and maximum thresholds in
each dimension. For a color description k, this
is mathematically defined fully in Equation 1 and
more compactly in Equation 2.

P(τLower,H
k < xH < τ

Upper,H
k )×

P(τLower,S
k < xS < τ

Upper,S
k )×

P(τLower,V
k < xV < τ

Upper,V
k ) (1)

= ∏
d∈{H,S,V}

P(τL,d
k < xd < τ

U,d
k ) (2)

The other factor in subjects’ choices is the
saliency of the color term. The saliency of color
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Figure 2: The LUX model for “yellowish green”
on the Hue axis plotted against a scaled histogram
of responses. The φ curve, the likelihood of a color
counting as “yellowish green”, is derived from the
τ curves representing possible boundaries.
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Figure 3: A Bayes Rational Observer sees a color
patch. The subjective likelihood P(ktrue(c)|c = x)
describes the likelihood that descriptor k is true of
the current color c given that it is located HSV
point x. The descriptor k is actually said propor-
tional to this subjective likelihood and a weight
representing how often a label is said when it
is true: P(ksaid |ktrue(c)). In Munroe’s data, the
shaded nodes are observed.

description k, also called availability and written
as α(k), is a background measure of how often
the term is used when it is true. Thus, to pick a
term that fits a color swatch and use language in
a natural way, subjects can pick a color term ac-
cording to the product of availability and subjec-
tive likelihood. Figure 3 summarizes this process
in a graphical model.

In Equation 3 , we introduce a simpler nota-
tion for Equation 2 that we build on in what fol-
lows. We abbreviate P(τL,d

k < xd < τ
U,d
k ) as φd

k (x
d)

and show how φd
k (x

d) can be defined by cases as a
function of how xd is situated with respect to the
lower limit µL,d and upper limit µU,d of the thresh-
old distributions:

φ
d
k (x

d) =


P(xd > τ

L,d
k ), xd ≤ µL,d

k

P(xd < τ
U,d
k ), xd ≥ µU,d

k

1, otherwise

(3)

LUX was learned from Munroe’s data by fit-
ting the parameters of the φ function for each de-
scription on each dimension independently to the
frequency histogram. For example, the parame-
ters for the φ function for yellowish green in Fig-
ure 2 were fit by maximizing the probability that
the bins in the data histogram were sampled from
the φ curve with standard Gaussian noise.

3.2 Distinguishing Descriptions

Munroe’s elicitation task is simple; in other set-
tings, people have more complex communicative
goals, such as unique reference. These goals mod-
ulate the link between internal semantic represen-
tation and observed speaker choice. In Munroe’s
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task, we assume, the speaker sampled from possi-
ble descriptive terms based on terms’ availability
and how likely terms were to fit the target color
value. We now consider how this changes when
speakers aim to differentiate between two objects.

The literature offers a key insight to get us
started: referential expressions are marked as
such, and the scalar structure of vague meanings
gives strong constraints on how vague terms can
be interpreted. For example, the fat pig can only
refer to the fatter of two pigs in the context, a cal-
culation that is easy to add to algorithms for refer-
ring expression generation (Kyburg and Morreau,
2000; van Deemter, 2006). However, things be-
come substantially more complicated in the case
of color, because color is multidimensional and
color categories can be approximated in compet-
ing ways, as with tan in Figure 1.

We approach the problem probabilistically. To
generate likely unique references, the speaker
must sample from possible descriptive terms pro-
portional to terms’ availability, how likely terms
are to fit the target, and how likely terms are to ex-
clude a distractor. This involves integrating over
all possible thresholds, to measure the probability
that a description should be interpreted to include
one color and exclude another. In the ordinary
case where two colors are far enough apart, most
thresholds work, and the approach defaults to the
kinds of natural descriptions seen in descriptions
of colors on their own. However, when the col-
ors become increasingly close, general color de-
scriptions (such as green) no longer are likely to
signal the distinction we need, while more spe-
cific color descriptions are (such as lime green and
pale green). This qualitative behavior is an impor-
tant part of vague language, as observed by Baum-
gaertner et al. (2012). (They also suggest that ac-
curate models of color vagueness would be neces-
sary for good performance in difficult cases.)

The same model can inform the resolution of
vague descriptions as well as generation. Resolv-
ing reference requires reasoning about how well
each description applies to each of the candidate
referents. We explore this reasoning for genera-
tion and understanding in the next section.

4 Algorithm and Implementation

The heart of our method is a measure of the con-
fidence with which we can use a color term to de-
scribe a color Y and to exclude a second color Z.

We will call this number the Y –but–not–Z con-
fidence rating. This is the probability that the
thresholds in context are chosen in such a way that
color term k fits color Y but does not fit distractor
Z. (That’s P(ktrue(c)|c = Y )×P(¬ktrue(c)|c = Z)
in the notation of Figure 3.) To generate a term
in context, we might consider each possible color
label, calculate its Y –but–not–Z confidence, and
finally pick a term proportional to its confidence.

We motivate our mathematical model by con-
sidering a single perceptual dimension, most eas-
ily visualized as Hue. In this case, the Y –but–not–
Z confidence is equal to the probability that the
upper and lower thresholds of that term can be set
such that Y falls inside them, and Z falls outside
of them. Thus each confidence rating will involve
the multiplication of two values: the probabilities
associated with the upper and lower boundaries.

In Figure 4, Y and Z are borderline Hue val-
ues; both are greener than the typical yellowish
green. In this case, there’s no constraint on the
lower threshold; the lower threshold fits the de-
scription with probability 1. On the other hand,
only the upper shaded region of Figure 4 supports
a categorization of Y but not Z as yellowish green.
This area is equal to φ(Y )−φ(Z). This is the prob-
ability that the Hue boundaries for this color term
will include Y and exclude Z. Symmetrical rea-
soning applies in the mirror-image case when the
colors are borderline yellow.

Another case is shown in Figure 5, in which Y
and Z fall on opposite sides: Y is borderline green,
while Z is borderline yellow. In these contrast-
ing borderline cases, it’s up to the speaker whether
to count Y in and Z out or vice versa, as in Fig-
ure 1. The choices can be good or bad, however,

Figure 4: The thresholds that separate two nearby
borderline cases cover probability φ(Y )− φ(Z),
here 0.74−0.05 = 0.69.
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Figure 5: The thresholds that separate two con-
trasting borderline cases cover probability φ(Y ) ∗
(1−φ(Z)), here 0.74∗ (1−0.38) = 0.46.

because they constrain the context. The proba-
bility that the upper threshold includes Y is φ(Y ).
The shaded area above Z represents the probabil-
ity that the lower threshold is placed such that Z
is excluded; its area is equal to 1− φ(Z). Thus,
the Y –but–not–Z confidence rating for this case is
φ(Y ) ∗ (1− φ(Z)). Again, there is a symmetrical
case with the colors reversed.

Finally, if Y is not a borderline case, as in Fig-
ure 6 then Y does not constrain the thresholds
at all. Thus, the Y –but–not–Z confidence rating
for this case is (1− φ(Z)). All three cases can
be generalized to a common form, however. Let
φ1(Y ) be φ(Y ) if Y is a borderline case opposite
Z, 1 otherwise. And let φ2(Y ) be φ(Y ) if Y is
a borderline case next to Z, 1 otherwise. Then
all the formulas we have exhibited fit the scheme
φ1(Y )∗ (φ2(Y )−φ(Z)).

With this insight, we can extend our comparison
to the three-dimensional case. The case is shown
in Figure 7 for a color description k.

To calculate this probability mass we generalize
Y –but–not–Z calculation to a case analysis in three

Figure 6: If Y is a clear case, we simply exclude
Z, for probability 1−φ(Z), here 1−0.38 = .62.

Figure 7: In the multidimensional case, solutions
respect constraints from Y that are independent
of Z, with probability φ1(Y ); they also select ap-
propriate standards that affect both Y and Z, with
probability φ2(Y )−φ3(Z).

dimensions as shown in Equation 4.

φ1(Y )∗ (φ2(Y )−φ3(Z)) (4)

In this equation, we generalize our notation to the
general case as follows:

• φ1(Y ) is ∏φ(Y d) over dimensions d where Y
and Z are contrasting borderline cases

• φ2(Y ) is ∏φ(Y d) over all other dimensions

• φ3(Z) is ∏φ(Zd) over all dimensions d

This expression is what we use in our implemen-
tation to calculate each color term’s Y –but–not–Z
confidence rating.

Given a confidence score, the evaluation is bal-
anced by the availability of the color description.

Algorithm 1 The scoring function to compare two
HSV tuples Y and Z for a single color term k

function SCORE(k,Y,Z)
TermA← 1
TermB← 1
TermC← φH

k (Z
H)×φS

k(Z
S)×φV

k (Z
V )

for each dimension d in (H,S,V ) do
if Y d is on opposite side from Zd then

TermA← TermA×φd
k (Y

d)
else

TermB← TermB×φd
k (Y

d)
end if

end for
score← TermA× (TermB−TermC)
score← score×α(k)
return score

end function
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For example, a common color term like green has
a high availability, whereas a less frequent term,
British racing green, has a much lower one. By
weighting a term’s score by its availability, we en-
sure that the program is less likely to generate rare
color labels unless they clearly target a difficult
distinction that the program needs to make.

With this score function complete, we arrive at
the basic outline of our algorithm. The algorithm
is shown in Algorithm 1. The distinguish function
cycles through the dictionary, calculates the Y –
but–not–Z confidence for each term k, and returns
the results in sorted order. In the cases in which k
describes Z better than it describes Y , the function
will evaluate to a negative number. Such cases are
rejected—given our model, the terms cannot de-
scribe Y without also describing Z.

5 Results

We have created an interactive visualization that
allows viewers to confirm the qualitative proper-
ties of our model for themselves. Figure 8 shows
a screenshot of the visualization.

Users click on either of the two color swatches
on the left to select colors, which are passed to the
program as two HSV triplets. The middle column
then displays a list of color terms associated with
those swatches; this is context-independent data
pulled directly from LUX. Terms are displayed in
two colors: terms that are generally good descrip-
tions of the target color but are bad at distinguish-
ing it from its alternative are grayed out. For ex-
ample, light green is grayed out at the top in Fig-
ure 8, because it’s such a good description of the
lower swatch. The column on the right then dis-
plays the results of the generation model for the
two colors. Typically, no term appears in both
lists—as is true in Figure 8—because it’s rare to
find cases like Figure 1 where there are two plau-
sible, competing ways to refine the meaning of a
color term so as to fit one color but not the other.2

Results are ranked by normalized confidence val-
ues; colors move up in the rankings when they
more precisely distinguish the target color from its
alternative. For example, pale green and yellow-
green overtake the more general spring green as
descriptions of the lower color in Figure 8.

2Our model does recognize a surprising difference be-
tween lime and lime green in Figure 8. This isn’t a fluke:
the same difference shows up in CSS color definitions for ex-
ample. We suspect that lime green evokes the peel of the fruit
but lime is named for the juice.

Because the colors in Figure 8 are so close, con-
text has a strong effect in selecting differentiating
descriptions. As the two colors get further apart,
there’s less probability mass assigned to interpre-
tations that categorize them the same way. Un-
der these circumstances, the differentiating color
terms converge to the color terms predicted by
the generic model. This recalls the heuristic of
Baumgaertner et al. (2012) that basic color terms
are used unless needed to distinguish. In other
words, our model produces marked descriptions
only when coarser terms are less reliable in dis-
tinguishing the two colors, so they are necessary
to achieve the communicative goal of distinguish-
ing the two colors. This recalls the “small gaps”
constraint of van Deemter (2006).

As a first step towards quantifying the perfor-
mance of the model, we got the data collected by
Baumgaertner et al. (2012). They showed subjects
color swatches in arrays of four, and asked sub-
jects either to identify a particular target swatch
in words (as director) or to pick the swatch that
best fit a verbal description (as matcher). At is-
sue was the ability of human matchers or various
algorithms to find the original target swatch (the
correct swatch) given directors’ descriptions. Peo-
ple’s success in these tasks depends on how diffi-
cult it is to distinguish the alternatives. Because
problems are so variable and task dependent, there
can be no universal benchmark of performance
in identifying colors, but the results are helpful
in understanding what we have accomplished and
where further research is necessary.

Baumgaertner et al. (2012) report an analysis of
29 judgments about the interpretation of color de-
scriptions in context across a range of difficulty
levels. Their baseline algorithm, which interprets
colors based on the nearest focal value in RGB
space, links 23 of them to the swatch the direc-
tor was instructed to describe. Of the remainder,
three represent clear problems with their system.
Our system, by contrast, gets all these 26 correct.
The remaining three cases raise the same problems
for both approaches. There seems to be one case of
human error: the director is signaled to describe a
brown swatch but produces blueberry, apparently
describing the adjacent purplish-blue swatch. And
two are cases of sparse data: the items deep grey
blue and dull salmon pink fall out of the frequent
vocabulary of Munroe’s data set. The two out-of-
vocabulary cases arise in the most difficult setting,

http://dev.w3.org/csswg/css-color/


Proceedings of the 18th Workshop on the Semantics and Pragmatics of Dialogue, September 1-3, 2014, Edinburgh, U.K.

Figure 8: A screenshot of our interactive visualization, contrasting two shades of green. The system’s
descriptions emphasize the greater saturation and greener hue of the top color, and the lower saturation
and yellower hue of the bottom color.

where directors must use low frequency terms to
describe closely related colors; we get 71% right
while human matchers recover the swatch signaled
to the human director only 78% of the time.3 Thus,
we conclude that we need larger and more targeted
data sets to distinguish the performance of our new
algorithm from that of people.

Baumgaertner et al. (2012) 29 key examples
are drawn from a larger elicitation experiment
that produced 196 different tokens, again across a
range of conditions. Our system resolves 152 cor-
rectly as written. Another 28 are out of vocabulary
but closely related to terms the system would re-
solve correctly (differing in spelling, comparative
or superlative morphology, hedges, paraphrases or
other lightweight modifiers). The system gets 8
wrong as written (again, this seems to include sev-
eral cases of human error); 6 are out of vocabulary
and closely related to terms that the system would
get wrong; and 2 are completely different from
any of our vocabulary items. All the system er-
rors are on low frequency items in situations with
close distractor colors, where we’ve seen people

3Interestingly, our system correctly resolves the alterna-
tive items dark grey blue and salmon pink in these cases. If
we can deal with the productivity of low frequency descrip-
tions, we see no obstacle to matching or even exceeding hu-
man performance.

also have difficulty. We were unable to find pat-
terns of systematic error in our system.

6 Conclusion

We have explored a problem solving approach to
the use of vague language. We have presented the
theoretical rationale for our approach, described a
broad-scale implementation, and offered a prelim-
inary empirical evaluation.

Our work is pervasively informed by previous
work on the semantics and pragmatics of dialogue.
But we have not deployed or evaluated our work
with interactive language use. That’s an obvious
and important next step.

We’re excited by opportunities our work brings
to assess the role of linguistic knowledge and ra-
tional problem solving in conversation. If success-
ful, these efforts will lead to better interactive sys-
tems. But even if not, we think they will help to
characterize speakers’ interactive strategies, and
thus to pinpoint the distinctive mechanisms that
support meaning making in dialogue.
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[Jäger2010] Gerhard Jäger. 2010. Natural color cate-
gories are convex sets. In Maria Aloni, Harald Bas-
tiaanse, Tikitu de Jager, and Katrin Schulz, editors,
Logic, Language and Meaning - 17th Amsterdam
Colloquium, Amsterdam, The Netherlands, Decem-
ber 16-18, 2009, Revised Selected Papers, volume
6042 of Lecture Notes in Computer Science, pages
11–20. Springer.

[Kennedy and McNally2010] Chris Kennedy and
Louise McNally. 2010. Color, context and
compositionality. Synthese, 174(1):79–98.

[Kennedy2007] Christopher Kennedy. 2007. Vague-
ness and grammar: the semantics of relative and ab-
solute gradable adjectives. Linguistics and Philoso-
phy, 30(1):1–45.

[Kyburg and Morreau2000] Alice Kyburg and Michael
Morreau. 2000. Fitting words: Vague words in con-
text. Linguistics and Philosophy, 23(6):577–597.

[Larsson2013] Staffan Larsson. 2013. Formal seman-
tics for perceptual classification. Journal of Logic
and Computation.

[Lassiter2009] Daniel Lassiter. 2009. Vagueness
as probabilistic linguistic knowledge. In Rick
Nouwen, Robert van Rooij, Uli Sauerland, and
Hans-Christian Schmitz, editors, Vagueness in Com-
munication - International Workshop, ViC 2009,
held as part of ESSLLI 2009, Bordeaux, France, July
20-24, 2009. Revised Selected Papers, volume 6517
of Lecture Notes in Computer Science, pages 127–
150. Springer.

[Lewis1979] David Lewis. 1979. Scorekeeping in a
language game. Journal of Philosophical Logic,
8(3):339–359.

[Ludlow2014] Peter Ludlow. 2014. Living Words:
Meaning Underdetermination and the Dynamic Lex-
icon. Oxford University Press, Oxford.

[McMahan and Stone2014] Brian McMahan and
Matthew Stone. 2014. A Bayesian approach to
grounded color semantics. Manuscript, Rutgers
University.

[Roy and Reiter2005] Deb Roy and Ehud Reiter. 2005.
Connecting language to the world. Artif. Intell.,
167(1-2):1–12.

[Steels and Belpaeme2005] Luc Steels and Tony Bel-
paeme. 2005. Coordinating perceptually grounded
categories through language. A case study for
colour. Behavioral and Brain Sciences, 28(4):469–
529.

[Stone and Webber1998] Matthew Stone and Bonnie
Webber. 1998. Textual economy through close cou-
pling of syntax and semantics. In Proceedings of
International Natural Language Generation Work-
shop, pages 178–187.

[Thomason1990] Richmond H. Thomason. 1990.
Accommodation, meaning and implicature. In
Philip R. Cohen, Jerry Morgan, and Martha E. Pol-
lack, editors, Intentions in Communication, pages
325–363. MIT Press, Cambridge, MA.

[van Deemter2006] Kees van Deemter. 2006. Generat-
ing referring expressions that involve gradable prop-
erties. Computational Linguistics, 32(2):195–222.

[Williamson1996] Timothy Williamson. 1996. Vague-
ness. Routledge, London.

[Young et al.2014] Peter Young, Alice Lai, Micah Ho-
dosh, and Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New similarity
metrics for semantic inference over event descrip-
tions. Transactions of the Association for Computa-
tional Linguistics, 2:67–78.


	Introduction
	The Linguistics of Vagueness
	Rational Analysis of Descriptions
	Lexicon of Uncertain Color Standards
	Distinguishing Descriptions

	Algorithm and Implementation
	Results
	Conclusion

