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Abstract

Dialogue is domain-specific, in that the

communicative import of utterances is

severely underdetermined in the absence

of a specific domain of language use. This

has lead dialogue system developers to use

various techniques to map dialogue utter-

ances onto hand-crafted, highly domain-

specific Dialogue Act (DA) representa-

tions, leading to systems which lack gen-

erality and do not easily scale or transfer

to new domains. Here we first propose a

new method which avoids the use of DAs

altogether by combining an open-domain,

incremental, semantic NL grammar for di-

alogue - Dynamic Syntax - with machine

learning techniques for optimisation of di-

alogue management and utterance genera-

tion. We then focus on a key sub-problem

associated with this vision: automatically

grounding domain-general semantic rep-

resentations in the non-linguistic actions

used in specific dialogue domains. Simi-

lar to some recent work on open-domain

question answering, we present an al-

gorithm that clusters domain-general se-

mantic representations of dialogue utter-

ances based on computing pragmatic syn-

onymy, in effect automatically inducing a

more coarse-grained domain-specific se-

mantic ontology than that encoded by

open-domain semantic grammars.

1 Introduction

“How many kinds of sentence are there? Say as-
sertion, question, command? – there are count-
less kinds: countless different kinds of use of
what we call “symbols”, “words”, “sentences”.
And this multiplicity is not something fixed,
given once and for all; but new types of language,
new language-games, as we may say, come into
existence, and others become obsolete and get
forgotten.” (Wittgenstein, 1953)

Perhaps the most unyielding obstacle in the work-

ing out of sufficiently general models of meaning

in dialogue is the astonishingly wide and open-

ended range of communicative effects that peo-

ple can achieve with language in different con-

texts of use. This is not just a matter of struc-

tural context-dependence of fragments, ellipsis

and anaphora for which there are increasingly gen-

eral accounts (see e.g. Ginzburg (2012); Kempson

et al. (forthcoming); Kamp&Reyle (1993)). Even

when a fully specified semantic representation in

some logical language is derived for an utterance,

the communicative import of the representation

is severely underdetermined in the absence of a

known activity, a ‘language-game’, that the repre-

sentation is deployed in. Conversely, even within

a simple domain, there’s a lot of variation in lan-

guage use that does not ultimately affect the over-

all communicative goal of the dialogue. For exam-

ple, in the travel domain, the following dialogues

all lead to a context in which A is committed to

booking a ticket for B from London to Paris: (a) A:

Where would you like to go? B: Paris, from Lon-

don; (b) A: Where is your destination? B: Paris,

A: And your port of departure? B: London. (c)

B: I need to get to Paris from London, A: Sure.

These dialogues can be said to be pragmatically

synonymous modulo the travel domain. What is

striking about these simple examples is that much

of this synonymy breaks down if one moves to an-

other domain (e.g. example (b) where A is an im-

migration officer): pragmatic synonymy relations

are domain-specific.

To bypass this difficulty, Spoken Dialogue Sys-

tems (SDS) designers/researchers have used hand-

crafted representations of the communicative con-

tent of utterances in specific domains, in the form

of Dialogue Acts (DA)1, designed to capture the

1Here we use the term “dialogue act” to encompass the
whole semantic representation used, ie. standard dialogue
acts such as “inform” together with content such as “desti-
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specific information needed to complete specific

tasks. DAs operate at the interfaces between the

core system components in a SDS - Dialogue

Management (DM), Natural Language Genera-

tion (NLG), and Spoken Language Understand-

ing (SLU) - and have thus lead to systems that

lack generality, and are difficult or impossible to

transfer to new domains. DAs form a bottleneck

representation between SLU and DM, and be-

tween DM and NLG. In addition, from a machine-

learning point of view DA representations may ei-

ther under- or over-estimate the features required

for learning good DM and/or NLG policies for a

domain.

1.1 Structure of the paper

In this paper, we first propose a novel architecture

for data-driven learning of fully incremental dia-

logue systems with little supervision beyond raw

dialogue transcripts, which avoids the use of DAs

altogether. DAs are instead generated as emer-

gent properties of semantic representations of ut-

terances in specific domains, formed by combin-

ing basic semantic units which are delivered by

open-domain incremental, semantic grammars2.

While we do not dispute people’s sensitivity

to DAs as more coarse-grained units of meaning,

here we operate under the assumption that, given

a set, stable domain of language use - such as buy-

ing a drink at a bar, ordering food in a restaurant,

booking a flight, etc. - to which interlocutors are

already attuned, the low-level semantic features of

utterances are sufficient to encode their pragmatic

force, and therefore, that Dialogue Acts need not

be explicitly represented3 .

Instead, the appropriate level of meaning rep-

resentation for a domain will be learned - rather

than hand-crafted/designed - from a set of suc-

cessful in-domain dialogues with no DA annota-

tions. These dialogues are first parsed using Dy-

namic Syntax (Kempson et al., 2001; Cann et al.,

2005), which maps them to open-domain seman-

tic representations of the final contexts reached

by the interlocutors, i.e. the semantic content

nation=Dublin”).
2Note that these grammars will also deliver generic

speech act representations such as “question” and “acknowl-
edgement” which we will learn the import of in specific do-
mains of usage.

3The question of how interlocutors come to coordinate on
the structure of an activity, i.e. how language-games emerge
in the first place, is a challenging one. We put this problem
on one side here, but see e.g. Healey (2008); Mills (2013 in
press); Mills & Gregoromichelaki (2010).

that they jointly commit to. In order to cap-

ture the domain-specific pragmatic synonymy re-

lations described above, we will assume a weak

form of supervision: that the dialogues are an-

notated with representations of the non-linguistic

actions taken and when, e.g. a data-base query, a

flight booking, serving a drink, etc. A function

is then learnt which maps these contexts to the

non-linguistic action representations. Effectively,

this function maps the very fine-grained semantic

ontology encoded by the open-domain DS gram-

mars (or any open-domain semantic parser), onto

a more coarse-grained ontology with fewer seman-

tic distinctions, based on pragmatic synonymy. It

is an algorithm for learning this function that we

then focus on in this paper.

First we review some recent related work, in

section 2. Then we present the overall model and

framework that we are developing fror this prob-

lem, in section 3. In section 4 we present the algo-

rithm we have developed for computing the prag-

matic synonymy function.

2 Related work

There has been a recent surge of interest in

domain-general or “open-domain” semantic pars-

ing. Most similar to our work is perhaps that of

(Allen et al., 2007; Dzikovska et al., 2008) who

devise a system for mapping open-domain logi-

cal forms in a formalism that is similar to Mini-

mal Recursion Semantics (the LF representation),

onto domain-specific representations suitable for

reasoning and planning within a specific dialogue

domain (the KR representation). However, unlike

the architecture proposed here, the ontology map-

pings are defined by hand, rather than learned from

data, and the grammar employed is not incremen-

tal.

There’s also the work of (Kwiatkowski et

al., 2013), who map open-domain CCG seman-

tic parses to Freebase for question-answering.

Here, an open-domain Question-Answering sys-

tem (note: not a full dialogue system) is learned by

using a wide-coverage CGG parser over questions.

Kwiatkowski et al. (2013) develop a method for

automatically mapping CCG semantic LFs onto

the Freebase ontology, which is similar in spirit to

the algorithm we present in section 4. In our case,

the ontology is not that provided by Freebase (al-

though nothing prohibits this), but instead the on-

tology of back-end application actions used in spe-
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cific dialogue systems (e.g. searching for a flight

from X to Y, paying a bill, etc). At a high level,

the problem is similar: mapping domain-general

semantic representations onto an ontology, though

Kwiatkowski et al. (2013) do not need to consider

sequences of sentences / utterances, or dialogue

acts. Similar work is presented by (Cai and Yates,

2013b; Cai and Yates, 2013a), who also work us-

ing Freebase and do not consider dialogues. Their

system maps English words onto individual Free-

base symbols, and does not handle conjunctions

and disjunctions of ontology symbols, as our ap-

proach and that of Kwiatkowski et al. (2013) do.

3 Overall model

Before presenting our main algorithm, we first

outline the overall method we propose of com-

bining (1) Dynamic Syntax (DS), a domain-

general incremental, semantic grammar frame-

work, shown to be uniquely well-placed in cap-

turing the fragmentary and context-dependent na-

ture of spontaneous dialogue (Gargett et al., 2009;

Gregoromichelaki et al., 2009); and (2) statisti-

cal machine learning with data-driven optimisa-

tion methods which are known to robustly han-

dle noise and uncertainty in spoken language. DS

will provide the domain-general semantic parsing

(i.e. SLU) and surface realisation (i.e. low-level

language generation) components, and machine

learning for DM will provide the crucial bridge

between them and higher-level action and content

selection processes. In order to integrate these

components, and to use dialogue data for training,

we require a ‘pragmatic synonymy” function map-

ping semantic representations provided by DS into

specific dialogue system domain ontologies. We

present this is section 4.

We first introduce and motivate the particular

open-domain semantic parsing formalism that we

will use in this work, and then explain the the pro-

posed overall method (see section 3.2).

3.1 Dynamic Syntax and TTR (DS-TTR)

For the required semantic parser, we use a well-

established semantic parsing framework, Dynamic

Syntax (DS, (Kempson et al., 2001)), which mod-

els dialogue as a word-by-word incremental, in-

teractive process of constructing meaning repre-

sentations, with no intermediary layer of syntactic

structure over words. We choose this rather than

other possible semantic formalisms (e.g. CCG)

because it has been shown to be uniquely well-

placed in capturing the inherent fragmentary and

context-dependent nature of spontaneous dialogue

(Eshghi et al., 2012; Gregoromichelaki et al., 2013

in press; Gargett et al., 2009). Since DS is in-

herently incremental, and not sentence-based, it

enables the word-by-word exploration – babbling

– of the space of possible grammatical dialogues

and their corresponding contexts within a given

domain (see e.g. Fig. 3).

In DS, grammaticality is defined as parsabil-

ity in context; words are associated with con-

ditional Lexical Actions that monotonically up-

date (partial) semantic trees, representing pred-

icate argument structure with new semantic in-

formation and/or requirements for information to

come; there are also Computational Actions, spec-

ifying general logical tree operations (e.g. beta-

reduction of daughters), and strategies to adjust

context for parsing of subsequent words. DS is

bidirectional with generation defined in terms of

parsing, and operating over the same meaning rep-

resentations: a dialogue agent can switch from

parser to generator (and vice versa) at any point

(subsententially, as well as at sentence bound-

aries), where the generator starts where the parser

finished, i.e. the context for generation will be the

(partial) semantic tree derived by the parser so far.

Dialogue fragments, including corrections, clari-

fication ellipsis, short answers, adjuncts and con-

tinued utterances are all modelled grammar- inter-

nally in this way (Gregoromichelaki et al., 2009;

Gargett et al., 2009).

Ty(t),
[

x=john : e
p=arrive(x) : t

]

Ty(e),
[

x=john : e
]

Ty(e → t)),

λr :
[

x : e
]

[

x=r.x : e
p=arrive(x) : t

]

Figure 1: Complete semantic tree for “John ar-

rives”. Nodes are decorated with semantic type

and formulae.

Type Theory with Records (TTR) Type The-

ory with Records (TTR) is an extension of stan-

dard type theory shown useful in semantics and

dialogue modelling (Cooper, 2005; Ginzburg,

2012).

To accommodate dialogue processing, and al-

low for richer representations of the dialogue con-
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text recent work has integrated DS and the TTR

framework to replace the logical formalism in

which meanings are expressed (Purver et al., 2010;

Purver et al., 2011; Eshghi et al., 2012).

In TTR, logical forms are specified as record

types (RTs), sequences of fields of the form [ l : T ]
containing a label l and a type T . RTs can be wit-

nessed (i.e. judged as true) by records of that type,

where a record is a sequence of label-value pairs

[ l = v ], and [ l = v ] is of type [ l : T ] just in case

v is of type T .

R1 :







l1 : T1

l2=a : T2

l3=p(l2) : T3






R2 :

[

l1 : T1

l2 : T2′

]

R3 : []

Figure 2: Example TTR record types

Fields can be manifest, i.e. given a singleton

type e.g. [ l : Ta ] where Ta is the type of which

only a is a member; here, we write this using the

syntactic sugar [ l=a : T ]. Fields can also be de-

pendent on fields preceding them (i.e. higher) in

the record type – see R1 in Figure 2. Importantly

for us here, the standard subtyping relation ⊑ can

be defined for record types: R1 ⊑ R2 if for all

fields [ l : T2 ] in R2, R1 contains [ l : T1 ] where

T1 ⊑ T2. In Figure 2, R1 ⊑ R2 if T2 ⊑ T2′ , and

both R1 and R2 are subtypes of R3.

3.2 Proposed Overall Method: BABBLE

We start with two resources: a) a wide-coverage

Dynamic Syntax parser L (either learned from

data (Eshghi et al., 2013), or constructed by hand),

for incremental spoken language understanding;

b) a set D of transcribed successful example di-

alogues in the target application domain. Overall,

we then need to perform 2 main steps: 1) extract

the dialogue goal states from D using L, and 2)

automatically generate jointly optimised Dialogue

Manager and NLG components.

We then carry out the following steps, explained

in greater detail below) to achieve steps 1 and 2:

Step 1.1 Parse all d ∈ D using L, generating a set

of final dialogue contexts, C , each a TTR Record

Type representing the grounded semantic content

for d; see Fig. 34 Collect the successful dialogues

in D and extract the set of goal states A, repre-

sented as record types;

4In all our example context representations in TTR, in-
formation about commitment to content, and who said what
is suppressed, but see (Purver et al., 2010) for how they are
encoded in TTR.

Step 1.2 Construct the Generalized Goal Con-

text, GGC: the maximally specific super-type (the

largest common denominator) of A;

Step 2.1 Automatically construct a Markov Deci-

sion Process (MDP) for D (see Fig. 3). Generate

the state space S using feature function F defined

to extract the semantic features (Record Types) in

the GGC (i.e. the state space tracks all and only

the semantic types present in the GGC), and com-

pute the transition function T via the set of parsed

dialogues, use L as the MDP action set, and de-

fine Reward function R as reaching the GGC state

while minimising time penalties;

Step 2.2 Solve the generated MDP using Rein-

forcement Learning methods: train an action se-

lection mechanism, where actions are system ut-

terances of the lexical items a ∈ L, optimised via

R. This process has a large action set, but ac-

tion selection will be bounded via a measure of

distance from GGC (see below) and is also con-

strained by the DS grammar.

The result will be the combined DM and NLG

components of a dialogue system for D: i.e. a

jointly optimised action selection mechanism for

DM and NLG, with L providing the SLU compo-

nent. Domain extension would then be a matter

of adding new data and retraining the system. We

now describe each of these steps in further detail.

Inducing the dialogue goal (Step 1). Recall

the examples of pragmatic synonymy in dialogue

given in the introduction, for example

(a) A: Where would you like to go? B: Paris,

from London; (b) B: I would like to go to Paris;

A: Sure, where from? B: London; (c) A: Where

is your destination? B: Paris A: And your port

of departure? B: London. (d) B: I need to get to

Paris from London A: Sure. These dialogues can

be said to be Pragmatically Synonymous modulo

the travel domain. The source of this variation is

twofold: structural, i.e. syntactic and interactional

variation; and lexical-semantic, i.e. variation in the

basic semantic ontology employed. While (a) and

(b) differ only structurally, and not semantically,

they differ from (c) and (d) on both levels.

The aim of this step is to extract automatically

from D, a compact, tractable representation of a

Generalised Goal Dialogue Context (GGC) that

captures – abstracts over – both kinds of varia-

tion, and which the RL agent will later be trained

to track and achieve in the MDP state space. The

GGC thus constructed will allow the RL agent not
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DS Context MDP State

Sys: you

want to

travel

C1 =







ev1 : es
ev2 : es
x=user : per
p=want(ev1,ev2,x) : t

p1=travel(ev2,x) : t







F (C1)
−→ S1 = []

a1







y

= ‘to’ ↓ T (S1, S2)







y

Sys: to C2 =











ev1 : es
ev2 : es
x=user : per
p=want(ev1,ev2,x) : t

p1=travel(ev2,x) : t

x1 : loc

p3=to(ev2,x1) : t











F (C2)
−→ S2 =

[

x : e
p1=dest(x) : t

]

au







y

= ‘London’ ↓ T (S2, S3)







y

User:

London

C3 =











ev1 : es
ev2 : es
x=user : per
p=want(ev1,ev2,x) : t

p1=travel(ev2,x) : t

x1=London : loc

p3=to(ev2,x1) : t











F (C3)
−→ S3 =

[

x=London′ : e
p1=dest(x) : t

]

a2







y

= ‘from’ ↓ T (S3, S4)







y

Sys:

from?

C4 =

















ev1 : es
ev2 : es
x=user : per
p=want(ev1,ev2,x) : t

p1=travel(ev2,x) : t

x1=London : loc

p3=to(ev2,x1) : t

x2 : loc
p3=from(ev2,x2) : t

















F (C4)
−→S4 =

[

x=London′ : e

p1=dest(x) : t

x2 : e
p2=src(x2) : t

]

Figure 3: Example incremental action (word) se-

lection via the BABBLE method. See Section 3.2.

only to reproduce the same diversity in its gener-

ated utterances, but understand and respond to the

diverse language employed by its users, as exem-

plified in D, without recourse to hand-crafted di-

alogue act representations. Importantly, the GGC

will also serve to constrain the very large space

of dialogue policies that the RL agent would oth-

erwise have to search/explore. The construction

of the GGC will proceed in two generalisation

stages: (1) structural: parsing all the dialogues in

D with L producing a set of all the final contexts,

C , reached by the dialogues in D; and (2) seman-

tic: partitioning of the set of all semantic features

of the C s into a set of equivalence classes, mod-

ulo pragmatic synonymy relations, forming, in ef-

fect, a domain-specific ontology. We explain these

steps below:

1.1. Parsing dialogues with a DS grammar al-

lows us to abstract away from the syntactic and in-

teractional particularities of specific dialogues in

D: dialogues are mapped onto domain-general se-

mantic representations of the final contexts jointly

established by the interlocutors, in effect allow-

ing us to organise the dialogues in D into a set

of structural equivalence classes. For example, di-

alogues (a) and (b) above will be grouped into the

same class in virtue of giving rise to the same final

context.

1.2. However, the DS grammar is domain-

general, encoding a very fine-grained ontology of

semantic types, i.e. lexical variation in the dia-

logues will always lead to semantic variation in

the C’s. But much of this variation is pragmat-

ically inconsequential for task success within a

given domain: for example modulo the travel do-

main, dialogues (b), (c) and (d) are pragmatically

synonymous (c.f. in the question-answering case,

(Kwiatkowski et al., 2013)).

Therefore, our goal here is to create equiva-

lence classes of the semantic features (TTR record

types) of the C , such that two features are placed

in the same equivalence class if they make the

same pragmatic contribution to in-domain task

success. To achieve this, we can use a weak form

of supervision: we can assume that the datasets

D contain, in addition to raw dialogue transcripts,

representations of the non-linguistic actions taken,

e.g. data-base queries, flight bookings, serving a

drink; depending on the domain. The seman-

tic features of the C will then be grouped into

equivalence classes in virtue of giving rise to the

same non-linguistic actions, i.e. in virtue of be-

ing pragmatically equivalent. For example, di-

alogues (b) and (c) above will give rise to dif-

ferent final contexts, but both lead to the same

non-linguistic action book(Source=London,

Dest=Paris). These action representations en-

code a domain-specific ontology and provide an

interface between the domain-general semantic

representations delivered by L and the extralin-

guistic context of the dialogue task. This pro-

cess can thus be described as mapping a fine-

grained, open domain, semantic ontology onto

a more coarse-grained domain-specific one with

fewer semantic distinctions, based on pragmatic

synonymy relations. The task of finding this map-

ping is akin to that of (Kwiatkowski et al., 2013)

who present a method for doing this, in order

to produce an open-domain Question Answering

system that uses an open domain CCG semantic

parser. This is the main algorithm that we present

in section 4.

Other steps are needed, in particular the re-

inforcement learning of incrementally generating

lexical actions so as to achieve the GGC. We leave

presentation of this method to future work, and
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Mapping Type Example mapping in FOL (Kwiatkowski et. al) Example mapping in TTR (this paper)

Collapse (type e) ι.x Public(x) ∧ Library(x)→ PL

[

r :

[

x : e
p=Public(x) : t

p1=Library(x) : t

]

x=ι(r.x,r) : e

]

→
[

x=PL : e
]

Collapse (type t) capital(y) ∧ in(y, x)→ capitalof(x, y)

[

x : e
y : e
p=capital(y) : t

p1=in(y,x) : t

]

→

[

x : e
y : e
p=capitalof(x,y) : t

]

Splitting capitalof(x, y)→ capital(y) ∧ in(y, x)

[

x : e
y : e

p=capitalof(x,y) : t

]

→

[

x : e
y : e

p=capital(y) : t

p1=in(x,y) : t

]

Table 1: Examples of the different types of ontology mapping in FOL and TTR

here focus on step 1.2 above.

4 Pragmatic Synonymy: grounding

semantic ontologies in action

In this section we describe an algorithm for learn-

ing a mapping F from semantic contexts derived

from parsing in-domain dialogues with wide-

coverage DS grammars, onto representations of

the back-end, non-linguistic actions of the system,

whose parameters together constitute the MDP

state space (see above).

4.1 Types of synonymy mappings

Our aim here can be seen as somewhat simi-

lar to the work of Kwiatkowski et al. (2013),

where an open-domain Question-Answering sys-

tem (note: not a full dialogue system) is learned by

using a wide-coverage CGG parser over questions.

Kwiatkowski et al. (2013) develop a method for

automatically mapping CCG semantic parses (of

questions, not dialogues) onto a particular knowl-

edge base ontology (in our case, the application

back-end actions, such as database searches, flight

bookings, etc). Overall, two types of mappings be-

tween meaning representations are discussed, col-

lapsing and splitting ontology constants of differ-

ent types(e.g. type e or t). Table 1 shows examples

of these in First-Order Logic (FOL) as per Kwait-

kowski et al. and Record Types (RT) of the Type

Theory with Records used in this paper:

As noted by Kwiatkowski et al. (2013), the full

set of possible collapses of an input meaning rep-

resentation MR is limited by its number of con-

stants, since each collapse removes at east one

constant. The number of possible collapses is

therefore polynomial in the number of constants

in MR and exponential in the arity of the most

complex type in the ontology. For typical dialogue

system domains this arity is only 2 or 3. The split-

ting operation covers cases where multiple con-

〈















ev1 : es
ev2 : es
x=user : per
p=want(ev1,ev2,x) : t
p1=travel(ev2,x) : t
x1=London : loc
p3=to(ev2,x1) : t















,

[

x=London′ : e
p1=dest(x) : t
act=book(x) : e

] 〉

Figure 4: Example 〈C,A〉 pairing. C represents

the context reached in: “A: I want to travel to Lon-

don B: Sure”, and A represents a booking action

with London as destination

stants in the ontology represent the meaning of a

single word. To constrain complexity, we can limit

the splitting operation to apply only once for each

underspecified constant in MR.

4.2 Problem Statement

Input A set, T , of training examples of the form

〈C,A〉 where each C is a domain-general record-

type (RT) representation of the final semantic con-

text reached by parsing an in-domain dialogue

with DS; and A, also a RT, representing the non-

linguistic, back-end action taken by the system at

the point where C was reached. As such, the A en-

codes the domain-relevant information required by

a dialogue system to complete its tasks. Figure 4

shows one training example in the travel domain.

Output A function DCont : RecType → RecType

(DCont stands for domain content, and is a func-

tion from TTR record types to TTR record types,

see section 3.1), determined by a set of ordered

pairs, F = {〈c1, a1〉 , . . . , 〈cn, an〉}, which, given

new, unseen contexts - but in part similar to the

training instances - extracts the domain-relevant

information from them: F specifies which parts

of the semantic information in the contexts - i.e.

which supertypes of the context RTs - go on to

make up which parts of the target action represen-

tations. F determines DCont as follows:

DCont(x) =
∧

〈c,a〉∈S
a, where, S = {〈c, a〉 ∈ F |x ⊑ c}

(∧ represents the intersection of one or more types
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(Cooper, 2005). The intersection is formed by the

union of the fields in the record types, with fields

that have the same label collapsing into one)

DCont has the following properties:

1. Many-to-one: Distinct semantic information

in the Cs could, in the general case, be

mapped onto the same action representation

or parts thereof. This property ensures prag-

matic synonymy relations among the super-

types of the Cs. For example, the seman-

tics of “my destination is Paris” and that of

“I want to travel to Paris”, while being for the

most part distinct, will be mapped onto the

same booking action in the travel domain.

2. Surjective over T : The space of possible tar-

get action representations, i.e. the space of

the supertypes of the As is fully covered by

the mapping. Formally:

∀ (〈C,A〉 ∈ T )∃ (S ⊆ F )
[

∧

〈c,a〉∈S
a = A

]

3. Maximally general over T :

(a) ∀ (〈cj , aj〉 ∈ F )∀ (〈C,A〉 ∈ T ) [C ⊑ cj → A ⊑ aj ]

i.e. that F generalises to - is correct for - T ;

(b) that anything less specific would not

generalise to T :

∀ (〈cj , aj〉 ∈ F )¬∃ck

[cj ❁ ck ∧ ∀ (〈C,A〉 ∈ T ) [C ⊑ ck → A ⊑ aj ]],

ensuring that F determines the minimal

amount of semantic information needed in

the contexts to determine some part of an

action representation, i.e. that the domain of

F remains most general (least specific).

(c) similarly to (b), that the mappings de-

termine the maximal amount of semantic

information in the target action represen-

ations - the range of F - i.e. that for any

〈c, a〉 ∈ F anything more specific than a

would not be sufficiently encoded by c.

4.3 Learning F

Hypothesising individual mappings using

type lattices In processing each training pair

〈Ci, Ai〉, and enumerating mappings from Ci

to Ai, the algorithm makes use of type lattices,

constructed in advance for all the Ci and Ai.

These encode the space of possible super-types of

a record type RT - see Fig. 5 - with RT appearing

at the bottom node, the empty type [] at the top

node, and all super-types of RT in between getting

progressively more specified as we move down

R0 : []

R11 :
[

x : e
]

R12 :
[

x1 : e
]

R21 :
[

x=user : e
]

R22 :

[

x : e
x1 : e

]

R23 :
[

x1=London : e
]

R31 :

[

x=user : e
x1 : e

]

R32 :

[

x : e
x1=London : e

]

R41 :
[

x=user : e
x1 : e
p=dest(x,x1) : t

]

R42 :
[

x=user : e
x1=London : e

]

R43 :
[

x : e
x1=London : e
p=dest(x,x1) : t

]

RT :

[

x=user : e
x1=London : e
p=dest(x,x1) : t

]

Figure 5: RT hypothesis lattice

the lattice: the lattice is a partial order with ⊑ (is

subtype of) being the order relation. Importantly,

each edge is also a record type RI representing

the possible minimal increments from one RT, Rj ,

to another, Rj+1, such that Rj ∧ RI = Rj+1 (see

Eshghi et al. (2013) where lattices are similarly

used to hypothesise semantic increments in a

grammar induction task).

A pair of such lattices for each training exam-

ple 〈Ci, Ai〉 (henceforth context lattice and action

lattice) thus specifies a partial order on individ-

ual mappings 〈c, a〉 from supertypes of Ci onto

supertypes of Ai: we can therefore explore the

space of such mappings, in an order that guar-

antees that the first 〈c, a〉 encountered, that gen-

eralises to other training examples - that satisfies

property 3(a) above - also satisfies 3(b) and 3(c),

i.e. that c encodes the minimal amount of se-

mantic information needed to determine a: the

maximally specific supertype of Ai that gener-

alises. Once any such 〈c, a〉 is found, we can

mark c and a with pointers on the lattices, thus

partitioning Ci and Ai into what has already been

processed/consumed successfully (intersection of

RT edges/increments leading to the root above

the pointer), and what remains to be processed

(intersection of RT edges/increments below the

pointers). What remains of the exploration of the

space of mappings can now take place, in a re-

cursive fashion, on the sub-lattices whose roots

the pointers now mark, with whatever falls out-

side these sub-lattices ignored in subsequent pro-

cessing. Furthermore, in the processing of a sub-
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sequent training example, 〈Cj , Aj〉, the mappings

already found for previous training examples and

stored in F , if applicable (i.e. if for a 〈c, a〉 ∈ F ,

Cj ⊑ c and Aj ⊑ a) can be ‘applied’ immediately

to 〈Cj , Aj〉, by moving the pointers on the corre-

sponding lattices to c and a, thus precluding any

repetitive processing across the training examples.

In fact, given bounded semantic variability within

a dialogue domain, if the first few training exam-

ples are varied enough, not much will remain to be

done for later examples. This process is, in effect,

a dynamic programming solution to the problem

and thus gives us a handle on its exponential com-

putational complexity.

input : A list T of training pairs [〈C1, A1〉, . . . , 〈Cn, An〉]
output: The mapping F , a set of ordered pairs

Initialise F = {};
Construct/Initialise Lattices for T ;

lattices ← [〈LC1, LA1〉, . . . , 〈LCn, LAn〉];

for i← 1 to n do

〈LC,LA〉 ← lattices[i];
〈LC,LA〉.MovePointersTo(F);

while ¬LA.pointerAtBottom() do

CONTEXTINC: while HasMoreIncrements(LC) do

c← NextSmallestIncrement(LC);

ACTIONINC: while HasMoreIncrements(LA)

do

a← NextLargestIncrement(LA);

for j ← i+ 1 to n do

〈LCj, LAj〉 ← lattices[j];
if Cj ⊑ c ∧ Aj 6⊑ a then

continue ACTIONINC;

end

end

F.add(〈c, a〉);

〈LC,LA〉.MovePointersTo(〈c,a〉)
end

end

end

end

Algorithm 1: Learning F

Details of Algorithm 1 Algorithm 1 de-

tails the above process. Given current pointer

positions on lattice pairs, 〈LC,LA〉, the func-

tions, NextSmallestIncrement(LC)

and NextLargestIncrement(LA) return

the next least specific, and next most specific

increments respectively. These are formed by

intersecting the record types corresponding

to edges on paths of increasing or decreasing

length respectively, downwards through the

lattice, from the current pointer position. The

implementations of these functions are both

in terms of a simple breadth first traversal of

the sub-lattices whose roots are marked by the

pointers - we suppress any detail here. The

HasMoreIncrements() function is boolean

valued, and determines whether the current

sub-lattice is exhausted, i.e. whether all possible

increments have already been returned. The

function MovePointersTo(〈c, a〉), applied to

a lattice pair, moves the pointers down to c and

a on the context and action lattices, as described

above. Finally, the inner most for loop, checks to

see if the current mapping hypothesis generalises

to the rest of the training examples, i.e. whether it

has the property 3(a) above.

This algorithm covers the mapping types dis-

cussed in section 4.1: collapsing and splitting

of ontology constants. To further constrain the

search, we can incorporate the constraints dis-

cussed briefly in that section. Finally, we have

not covered functional types here, but TTR affords

the full power of the lambda calculus (Cooper,

2005), and these can be incorporated within the

algorithm. We leave the details on one side here.

5 Summary and Future Work

We proposed a novel architecture for learning fully

incremental dialogue systems with little supervi-

sion beyond raw dialogue transcripts and without

recourse to dialogue act representations, by com-

bining open-domain, incremental semantic gram-

mars with state-of-the-art machine learning meth-

ods for learning NLG/DM policies. We argued

that dialogue acts can instead be seen as emer-

gent from learning, and that they need not be ex-

plicitly represented. We then focused on a key

sub-problem associated with this vision: automat-

ically grounding domain-general semantic repre-

sentations in the non-linguistic actions used in

specific dialogue domains. We presented an al-

gorithm for learning such a mapping, which, in

effect, clusters parts of domain-general seman-

tic representations of dialogue contexts based on

pragmatic synonymy, thus inducing a more coarse-

grained domain-specific semantic ontology than

that encoded by open-domain semantic grammars.

A major part of this paper is a proposal for a

programme of research, and hence the most im-

mediate future work consists in carrying out this

research and implementing/evaluating the algo-

rithms proposed.
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