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Abstract

This paper describes a statistical corpus
study of self-repairs in the disfluency-
annotated Switchboard corpus which ex-
amines the time-linear nature of self-repair
processing for annotators and listeners in
dialogue. The study suggests a strictly lo-
cal detection and processing mechanism
for self-repairs is sufficient, an advantage
currently not used effectively under the
bonnet of state-of-the-art automatic dis-
fluency processing. We then show how
simple local fluency measures using mod-
ified language models can be strongly
indicative of repair onset detection, and
how simple information theoretic mea-
sures could characterize different classes
of repairs.

1 Introduction

Statistical language modelling for self-repair has
enjoyed good results for accurately detecting
edited words within repairs (Heeman and Allen,
1999; Charniak and Johnson, 2001; Johnson and
Charniak, 2004; Georgila, 2009; Zwarts et al.,
2010; Qian and Liu, 2013). However, these suc-
cessful systems ignore the classification of the re-
pair’s function and interpretation; furthermore the
models used are generally computationally com-
plex, over-predictive, and unrepresentative of a lis-
tener’s incremental interpretation process, raising
questions of psychological plausibility.

Beginning with classification, we consider the
structure and taxonomy of first-position self-
repairs, following the annotation scheme first pro-
posed by Shriberg (1994) and the Switchboard dis-
fluency corpus (Meteer and Taylor, 1995) annota-
tion protocol:

John and Bill
︸ ︷︷ ︸

original utterance

[ like
︸ ︷︷ ︸

reparandum

+ {uh}
︸︷︷︸

interregnum

love ]
︸ ︷︷ ︸

repair

Mary
︸ ︷︷ ︸

continuation

In addition to this structural vocabulary, from
here on we consider therepair onsetto be the first
word after the (possibly null) interregnum, and the
interruption point as the transition labelled ‘+ ’
between the reparandum and the repair. Within
this schema it is possible to distinguish three main
classes of repair:

(1) “But one of [ the, + the ] two things that I’m
really. . .”
Repeat (sw4356)1

(2) “Our situation is just [ a little bit, + kind of
the opposite ] of that”
Substitution (sw4103)

(3) “. . . the bank was suing them [ for, +{ uh,} ]
because they went to get. . .”
Delete (sw4356)

Intuitively, a repair seems likely to be inter-
preted as a delete (3) if the following word (the
repair onset) has no substitutional relation with its
reparandum before the interruption point, having
an overriding or cancelling effect; substitutions
(2), in contrast, do exhibit some substitutive prop-
erty or parallelism; and verbatim repeats (1), al-
most trivially, exhibit complete parallelism.

The interpretation of self-repairs by both an-
notators assigning bracketing on transcripts, and
listeners assigning an interpretation function dur-
ing dialogue, is not trivial. One could argue that
simply checking for verbatim repetition for re-
peats, syntactic constituent identity for substitu-
tions – see Levelt (1983) – and otherwise posit-
ing a delete, is a sufficient classification protocol.
However there are many different possible sub-
classes, and gradient effects are exhibited in judge-
ments of the classification of delete or substitution.
As we have found in preliminary annotation exper-
iments, annotators do not agree on each decision.
The following examples show possible alternative
interpretations (italicized) to the Switchboard an-
notations:

1sw* are conversation numbers in Switchboard.
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(4) “and [ there’s, +?] it’s ] completely
generic.”
Substitution or delete? (sw4619)

(5) “a matter where priorities are [ at, + ]
placed.?]”
Delete or substitution? (sw4360)

In terms of the incremental dialogue seman-
tics of these different forms, as Ginzburg et al.
(2013) discuss, there is a broad difference be-
tween forward-looking (verbatim repeats, filled
pauses/editing terms) andbackward-lookinginter-
pretations (reformulation such as (2)). Deletes,
utterance-initial forms of which are often called
restarts, are more destructive than substitutions
as they are driven by continuing the original ut-
terance, rather than replacing or modifying the
reparandum. A speaker or annotator may infer a
more dramatic change of content in processing a
delete. Also in on-line detection, as they do not ad-
here to well-formedness rules (Levelt, 1983), one
must use other mechanisms to process them.

We maintain the classification distinction be-
tween substitutions and deletes, but the need for
gradient judgements between these classes is clear
due to the possible different interpretations of (4)-
(5). Some repairs are more prototypical of their
class than others. We address this in section 5.

The second issue we wish to address is the time-
linear way in which people process repairs, a con-
straint which rule-based disfluency detection mod-
els do not prioritise – even if they are embedded in
incremental systems – as we will discuss below.
In consideration of working memory constraints,
it is much more likely that repair operations begin
once the repair onset is detected, rather than con-
stantly predicting a reparandum before any disflu-
ency has been encountered. Resolution can still be
as fast and automatic as psycholinguistic evidence
suggests (Brennan and Schober, 2001), but with-
out maintaining all possible repair paths.

We investigate the intuitions of a local self-
repair detection and resolution mechanism with
gradient interpretation through a corpus study and
language modelling. Our corpus study in section
4 observes the frequency of the three main classes
and their subtypes in Switchboard, and the inter-
actions of repair class distribution with features
of their local utterance contexts. We then present
a potential model of incremental repair detection
and and interpretation in section 5, based on infor-
mation theoretic measures.

2 Previous Work

Corpus analysis of Switchboard Shriberg and
colleagues (1994; 1996; 1998) have done exten-
sive work annotating and analysing the Switch-
board corpus for repairs, editing terms and filled
pauses, using a reliable disfluency annotation
scheme (Meteer and Taylor, 1995) (see above).
Shriberg (1994) creates a taxonomy of disfluency
types: filled pause (FP), articulation disfluency
(ART), substitution (SUB), insertion (INS), dele-
tion (DEL), repetition (REP), hybrid disfluency
(HYB) and conjunction (CON), the last of which
occurs between speaker utterances. HYB is an
important member of Shriberg’s taxonomy due to
the plethora of combinations of these repair oper-
ations in Switchboard, as we will show below.

Shriberg (1996) compares the distribution of
disfluency types across three different dialogue
domains including Switchboard. The most com-
mon type in all three domains is FP followed by
REP. DEL, defined as a repair containing at least
one deleted word with no insertions or substitu-
tions, and SUB, defined as a repair having at least
one substitutive relation to the reparandum with
no deletes or insertions, were ranked 3rd and 4th
in Switchboard respectively.

In terms of incremental processing, Shriberg
showed an interaction between the position of the
interruption point and the disfluency type: per-
word rates by position showed that the three most
common disfluencies (FP, REP, and DEL) were
much more likely to occur in initial position than
in medial position. The remaining types appear
to be roughly equally likely in initial and me-
dial positions. Furthermore Shriberg and Stol-
cke (1998) investigate retraces, which are either
verbatim repeats or repairs with one or more re-
peated words. Fitting parameters over the entire
disfluency-tagged corpus, there is a logarithmic
decay in the likelihood of retracing back one more
word as the number of words since the last utter-
ance or repair boundary increases. Speakers rarely
retrace more than one or two words. This relation-
ship supports a claim for a very local strategy for
repair resolution.

Statistical self-repair detection In state-of-the-
art self-repair detection on transcripts, Qian and
Liu (2013) achieve the best reported perfor-
mance on the Switchboard disfluency test cor-
pus, achieving an f-score for detecting reparan-



Proceedings of the 17th Workshop on the Semantics and Pragmatics of Dialogue, December 16-18, 2013, Amsterdam, The Netherlands.

dum words of 0.841. They use a three step
detection system using weighted Max-Margin
Markov (M3) networks: (1) detection of edit-
terms/fillers/interregna (2) detection of reparan-
dum words, and (3) refining the previous steps,
using a cost-sensitive error function. Georgila
(2009) introduces a post-processing method of In-
teger Linear Programming (ILP) to improve over-
all accuracy of various off-the-shelf methods, re-
porting an f-score for detecting reparandum onset
words at 0.808 and repair onsets at 0.825 for a
CRF model. While these results are impressive,
the systems do not operate incrementally: they
maximise the overall likelihood of tag sequences
in utterances, using utterance-global constraints,
rather than focussing on incremental accuracy.

Zwarts et al. (2010) describe an incremen-
tal version of Johnson and Charniak (2004)’s
noisy channel model. The detector uses a bi-
gram language model trained on roughly 100K ut-
terances of reparandum-excised Switchboard data
for its “cleaned” language model. Its channel
model is a statistically-trained S-TAG which has
simple reparandum-repair alignment rules for its
non-terminals (copy,delete,insert,substitute), pars-
ing all possible repair structures for a given utter-
ance hypothesised in a chart, before pruning the
unlikely ones. It performs equally well as the
non-incremental model by the end of each utter-
ance, achieving an f-score of 0.778 for the Switch-
board disfluency task, and is modified to make de-
tections early. They report the novel incremen-
tal evaluation method oftime-to-detectionfor cor-
rectly identified repairs, achieving an average of
7.5 words from the start of the reparandum and
4.6 from the start of the repair phase, longer than
the average repair length. They also introduce
delayed accuracy, a word-by-word recall evalua-
tion of the gold-standard disfluency tags from the
point reached utterance so far, reporting recall in
one word histories being 0.578, steadily increasing
word-by-word until 6 words back where it reaches
0.770.

An earlier incremental system was Heeman and
Allen (1999)’s multi-knowledge source approach
which employs templates of repair structures
within a complex incremental language model.
This performs slightly worse than the noisy-
channel approach above at detecting reparandum
words (recall 65.9% and precision 74.3%), with
the sparseness of the data providing problems

for templates– the fact that the repeat sequence,
w1, w1 is the most common repair structure may
be very useful for an incremental classifier, but
there is a long tail in the distribution of repair
structures: they report that 1,302 modification re-
pairs (non-deletes) take on 160 different repair
structures in the TRAINS corpus, with only 47
(29.4%) occurring at least twice. To combat this
they use over-prediction of templates, initially pro-
viding high recall with low precision, then fil-
ter out unlikely candidate repair structures us-
ing lexical, POS and intonation features. They
include a feature encoding that a repair has al-
ready been detected in the utterance: in TRAINS,
35.6% of repairs overlap. Utterance-initial can-
celling repairs (re-starts), were particularly prob-
lematic to identify – we suspect through lack of
POS- or word-level parallelism and available tem-
plates, which can be exploited in repeats and sub-
stitutions, but not for deletes. Heeman and Allen
also report very high accuracy for detecting dis-
course markers/editing terms (both as interregna
and as forward-looking repairs), identifying 97%
of them with 96% precision.

3 Approach: locally triggered repair
detection and classification

In the popular automatic detection task, while in-
cremental systems exist, they use over-prediction,
large chart storage and filtering (Zwarts et al.,
2010; Heeman and Allen, 1999). A parsing chart
used solely for disfluency structures positing ev-
ery possible repair path grows approximately cu-
bically with the length of the utterance. Also,
(Zwarts et al., 2010)’s TAG parser also has a
run-time complexity ofO(N5). This complex-
ity blow-up seems cognitively implausible, partic-
ularly given the relative sparsity of repairs. In ad-
dition, these approaches cannot easily deal with
processing embedded repairs realistically, as a
stack of charts would be required, further increas-
ing complexity– consequently these are ignored
in training (Johnson and Charniak, 2004). Rather
than positing all possible repair alignments, intu-
itively, a listener is almost certain an utterance is a
non-repair before the repair onset, so a backtrack-
ing mechanism employed upon interruption point
detection seems more plausible. A more strictly
incremental detection should improve responsive-
ness (time-to-detection) too.

The clear omission in state-of-the-art systems
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is repair classification. We assume dialogue par-
ticipants are sensitive to the function of a repair
for several reasons. One may make direct use
of semantic dependencies in substitutions such as
“I saw [one, +{no,} two] men”, but may draw
more pragmatic and turn taking inferences about
utterance-initial deletes (restarts). Also, recog-
nizing whether your dialogue partner sits either
side of the statistically significant divide between
“repeaters” and “deleters” (Shriberg, 1996) may
help alignment. Classification’s obfuscation in the
standard NLP disfluency task is perhaps due to its
lack of clarity in definition. Verbatim repeats with-
standing, as mentioned above there is often dis-
crepancy between human annotations, suggesting
gradient effects; finding a system that can reliably
classify the extent of the repair and its function in-
crementally is a difficult challenge.

Given the problems with the various ap-
proaches, we are motivated to find a psycholog-
ically plausible incremental method for process-
ing speech repair types by considering the time-
linear order in which listeners receive the incom-
ing acoustic signal and then react:

1. Detection of theinterruption point, triggered
via some combination of a partial word, an
editing term forming an interregnum or char-
acteristics of the repair onset.

2. Estimation of reparandum start position
through some backward-looking process.

3. Possibly simultaneously with (2), estimation
of the repair end, via detection of a further
repair, a fluent continuation or the end of the
utterance; interleaved with (1) and (2), the re-
pair’s classification.

In the remainder of this paper we present a
corpus survey in section 4 and a proposed ap-
proach for modelling repair in section 5 investi-
gating these stages.

4 Self-Repair Distributions in
Switchboard

Our initial repair distribution study uses the stan-
dard Switchboard training corpora (all conversa-
tion numbers sw2*,sw3* in the Penn Treebank
III release), plus the non-Treebank Switchboard
files, giving a total of 972 transcripts,∼196,600
utterances,∼1.28M words, from which we extract
40,485 self-repairs based on the annotations.

The base-rate likelihood of a given word begin-
ning a repair onset is p= 0.0366, that is on av-
erage once every 27.3 words of speech.2 We do
not distinguish between repairs crossing utterance
boundaries and those marked within an utterance
unit, treating them both as first-position within one
continual stream, however the difference between
these two types would be interesting to consider in
further study.

Repair taxonomy by alignment To investigate
the distribution of the different types of repair,
we follow Johnson and Charniak (2004) in their
use of minimum string-edit distance alignment.
Ignoring a handful of backwards-looking disflu-
encies which are annotated within editing term
sequences, our aligner classifies 40,364 exam-
ples. It operates by mapping each reparandum
word to a repair word, where each word must re-
ceive at least one alignment with the best pos-
sible score. In addition to their alignment cat-
egories we introduceCOMPLETEPARTIAL, which
aligns prefix→complete word relations such as
“j- + just”. We used the following scores
to ensure that ‘weaker’ substitutional relations
are replaced by stronger ones:REPEAT:6, COM-

PLETE PARTIAL:5, SUB[same POS]:4, SUB[same POS

first letter]:3, SUB[arbitrary]:2, DELETE:1 and INSERT:1.
We decided that asCOMPLETEPARTIAL is a partial
repeat it should be selected as a stronger alignment
over aSUB[same POS].

The most frequent aligned structures extracted
are shown in Table 1: we split the structures be-
tween the broad classes of verbatim repeats, sub-
stitutions and pure deletes (no repair phase anno-
tated), in order to get the most prototypical deletes
as judged by the Switchboard annotators.

1139 different alignment sequence types were
found, with only 38.9% of types occurring at least
twice, a figure higher than Heeman and Allen
(1999)’s reported 29.4%, most likely due to a big-
ger corpus size. As can be seen, the majority of
types are within substitutions, which have a long
tail of compound types – the 10 example substi-
tutions shown only constitute roughly half of all
substitution occurrences. Deletes were the rarest,

2We exclude the first word of every utterance that is not
a continuation, as you cannot begin a disfluency repair ini-
tiation across these boundaries.∼100 repairs’ repair onset
occur at the same word as an embedded repair, so simply
dividing the number of word transitions by the number of re-
pairs annotated would give a slight, but insignificant, boost in
raw likelihood.
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Repair class Most Frequent repair types (% overall repairs)

Repeats (56.79%)
+interregnum=11.96% of class;

reparandum=1.23 (std=0.53, power

y = 1.7229x−4.425 ,

R2
= 0.9565);

I

I

rep

46.2%

do you

do

rep

you

rep

8.2 %

had a

had

rep

a

similar

rep

similar

rep

1.5 %

can send

can

rep

send

in

rep

in

a

rep

a

rep

0.3%

Substitutions
(36.55%)+interregnum=18.65%

of class; reparandum=1.78 (std=1.16,

powery = 1.0454x−2.593 ,

R2
= 0.9227);

firm

office

sub

10.2%

d-

don’t

complete_partial

3.3%

I guess

I

rep

think

sub

1.8%

the

just

insert

the

rep

1.4%

I just

I

rep
del

1.3%

in

in

rep

the

insert

1.0 %

they’re

they

sub

should

insert

0.9%

they’ve never

they

sub

never

rep

0.9 %

the

kind

insert

of

insert

the

rep

0.7%

that may

I

sub
del

0.7%

Deletes (6.66%)
+interregnum=0.7% of class;

reparandum=1.35 (std=0.88, power

y = 0.938x−2.995 ,R2
=

0.9956);

and

when

del

5.0%

dont

normal

del

i

del

0.8%

Table 1: Distribution of the most frequent repair disfluencies in Switchboard
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conflicting with Shriberg (1996), but mainly due
to our definition covering pure deletes only.

While building a rule-based repair grammar is
not what we advocate in this paper, it is worth not-
ing the observed alignment sequences can be com-
pressed into 194 different operation sequence pairs
such as [SUB(rm−i-Rn−j) REP(rm-Rn)], in this
case representing a substitution alignment fromi

words back from current reparandum indexm to a
repair wordj words back from current repair index
n, followed by a repetition alignment between the
current indices. In terms of coverage, due to the
sparsity of most alignment sequences, the strength
of Johnson and Charniak (2004)’s generative S-
TAG grammar approach over a template based one
(Heeman and Allen, 1999) becomes clear – for ex-
ample the approach allows the most frequent re-
pair type, repeats, to have high likelihood within a
repair ‘grammar’, regardless of their length.

Reparandum lengths First-turn repairs tend to
be very short, with a mean reparandum length of
1.44 (partial) words (pop. st.dev = 0.88). As
with many linguistic phenomena, their length dis-
tribution can be characterized as an inverse power
law: a functiony = 1.7197x−3.61, wherex is the
reparandum length in words andy is the average
relative frequency of that length, has a goodness-
of-fit R2 = 0.9635 up to length 9. Reparanda of
1 or 2 words account for 90.8% of repairs and
lengths 1-3 account for 96.5%. Repeats (1.23
words) and deletes (1.35 words) are significantly
shorter than substitutions (1.78 words), which also
exhibit a shallower power-law decay – see Table 1
for the figures.

With the vast majority of reparanda being
1-3 words long, a very local model of context
could be used to capture them. As mentioned,
previous approaches using sequence-based lan-
guage models in combination with repair gram-
mars and templates have had success, but there
is scope for incorporating repair detection more
directly into an n-gram model (though not nec-
essarily through Hidden Event Language Models
(HELMs) (Georgila, 2009), which require longer
contexts and more training data). Furthermore,
as Shriberg and Stolcke (1998) showed, the like-
lihood of retracing back one more word in re-
traces decays logarithmically with the number of
words into a fluent word sequence, so the need
to store all possible reparandum sites before hav-
ing heard an interruption point seems unnecessar-

ily complex: a locally triggered recovery mecha-
nism does not have far to backtrack. Repeats and
deletes are frequently short so their repair onset
and reparanda will often fall within a bi- or tri-
gram: for example, presuming perfect interreg-
num and edit term recognition, a trivial repeat-
word featurewi = wi−1 captures 46.2% of all
repairs. Use of such local alignments may yield
high precision, but we need a more general way
of detecting interruption points in a local n-gram
context which can also capture longer repairs, as
will be discussed below.

Embedded repairs 11.9% of all repairs are em-
bedded inside a longer structure – this divides be-
tween 9.9% chaining repairs, embedded within
the reparandum phase as in (6), and 2.0% nested
within the repair phase of a longer repair.3 While
these appear to need more complex resolution
mechanisms, which is presumably why they are
ignored in the training phase and evaluation of au-
tomatic disfluency systems, they need not be pro-
cessed as hierarchically embedded structures by
listeners on-line. They are frequently short, with
mean reparandum 1.28 words long (std=0.67), and
so can be resolved very locally, again in a short n-
gram context, and may provide an immediate fea-
ture for following repair onsets. Intuitively an in-
terruption point indicates speaker trouble, so the
likelihood of a consequent interruption point in the
following word transitions increases.

(6) “ [ [ This, + it, ] + they ] are really. ”
Embedded chaining substitution- (sw3389)

Partial words as interruption point indicators
The most reliable lexical indicator of a repair onset
is a preceding partial word. According to the tran-
scripts, the likelihood of a repair onset following
a partial word that is not utterance-final is 0.925,
boosting the likelihood significantly more than the
presence of an interregnum, as will be discussed
below. Furthermore, the remaining 0.075 of prob-
ability mass for continuations, upon inspection,
look like mis-transcriptions. Reparandum-final
partial words are present in 10.4% of repairs. Fur-
thermore, the completion of a single partial word
is one of the most frequent repair structures (3.3%
of all repairs). The probability of the partial word

3While Shriberg (1994)’s thesis and Meteer and Taylor
(1995)’s annotation attempted to formalise these, they remain
a problem for consistency of annotation- it is not always clear
whether they should be annotated as nested or chaining.
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being a deleted reparandum also rises from the
overall average rate 0.066 to 0.171.

This is clearly a very useful feature for detection
and classification. Charniak and Johnson (2001)
posit an optional phase between the reparandum
and the interregnum called the ‘free-final’, consist-
ing of a sequence of partial words of any length,
which, when used as a training feature for an
edited words classifier, can improve the detection
of repairs. Subsequent work does not use partial
words in an attempt to simulate a more realistic
testing situation for dialogue systems. While we
cannot make direct predictions here without the
acoustic data, we investigate how a simple word
completion predictor could be a fair approxima-
tion to an annotator’s incremental processing in
section 5.

Interregnum vocabulary Another incremen-
tal indication of repair, which has been estab-
lished in previous empirical work (Clark and
Fox Tree, 2002) and in formal models of dialogue
(Ginzburg, 2012), is the presence of a conven-
tional editing term for signalling speaker trouble.
The editing signals that constitute most repair in-
terregna have a characteristic vocabulary, a fact
Heeman and Allen (1999)’s system exploited to
detect them with almost perfect accuracy.

In Switchboard, only 13.9% of revision repairs
have an interregnum, so it is not a strong repair
indicator, which is surprising given its important
role in formal and empirical models. However,
if one is identified correctly, its presence signals
information about the type of upcoming repair:
the likelihood of a substitution rises to 0.499, and
the likelihood of a delete reduces to<0.01, which
could be due to deletion’s more destructive seman-
tic ‘cancelling’ function on the reparandum. There
are more substitutions with interregna than repeats
in raw frequency and significantly more relative
to their class size (2752/14755 (18.65%), versus
2741/22921 (11.96%)χ2

(1)=322.9,p<0.0001).
Interregna share a virtually identical vocabulary

to editing signals in the more commonabridged
(Heeman and Allen, 1999) orforward-looking
(Ginzburg, 2012) repairs which comprise an edit-
ing signal followed by a fluent continuation to
their preceding context, rather than a disfluent one.
Focussing here on interregnum vocabulary distri-
butions, we obtain the probabilities in the below
table, showing the predictive power of the vocab-
ulary item and its relative frequency within all re-

pairs. The filled pause “uh” and discourse marker
“you know” are the most indicative, increasing the
probability of a repair from the base rate to 0.155
and 0.1 respectively. These two items are also
the most frequently occurring within repairs (9.0%
and 2.6% of repairs have them, respectively). The
lack of predictive power even the most frequent in-
terregna forms have to predict repair means inter-
regnum presence does not provide a reliable fea-
ture for detection on its own; however as it has
significant interaction with repair type, it is a use-
ful feature for repair classification.

form p(repair|form) p(form|repair)
(fluent word) 0.037 0.861

“uh” 0.155 0.090
“you know” 0.100 0.026

“well” 0.080 0.006
“I mean” 0.074 0.005

“um” 0.061 0.003
“yeah” 0.038 0.002
“or” 0.017 0.002

“like” 0.014 0.003
“so” 0.005 0.001

“actually” 0.025 0.001

5 Language models for on-line repair
processing

Having observed some distributional properties of
the form of self-repairs that could contribute to
on-line detection and classification tasks, we now
introduce a simple information theoretic model
which incorporates some of them, including local
repair detection based on language model proba-
bility and partial word presence. This model can
be used orthogonally to alignment approaches dis-
cussed above, and should provide scope for more
efficient, realistic and robust implementations.

We model the task of listeners and annotators as
representing the following constituents of a repair,
ignoring interregna and other editing terms:

...wN
o [w1

rm...wN
rm +w1

rp...w
N
rp]w

1
c ... (7)

Intuitively and in accordance with the process-
ing order outlined in section 3, the first detection
problem is recognizing the repair onsetw1

rp (orw1
c

for deletes). For this we intuit the most impor-
tant factor is syntactic disfluency, that is, viola-
tion of syntactic expectation. Following a detec-
tion of this violation, the task is to find the start of
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the reparandum – which can be seen as maximis-
ing the fluency of a sequence includingwN

o w1
rp –

while simultaneously beginning to compute the re-
pair’s parallelism to the reparandum onsetw1

rm.
The final task is to find the repair endwN

rp (or w1
c

for deletes) and classify the repair through com-
puting its parallelism to the reparandum up to its
endwN

rm. We discuss the tools we use to model
violation of expectation and parallelism below.

Fluency measures for incremental repair on-
set detection We require a language model that
can predict which word, or class of words, hear-
ers are likely to hear next in on-going dialogue.
Although we currently lack robust large-scale pre-
dictive incremental parsers – though see (Eshghi
et al., 2013; Demberg et al., 2013) for on-going
efforts – we can use an approximation to incre-
mental lexical and syntactic fluency with n-gram
language models and insights from recent work
on modelling grammaticality judgements (Clark et
al., 2013). We train a trigram model with Kneser-
Ney smoothing (Kneser and Ney, 1995) as our
principal default fluency measurementpf :4

p
f (wi | wi−2, wi−1) = p

KN (wi | wi−2, wi−1) (8)

We can define an additional measure of fluency
based on the insights of the frequency of partial
words at interruption points in section 4. We train
a simple word completion modelpcomplete(w|wi)

which operates on any annotated partial word
prefix wi to provide a distribution over possible
completions, and thus the most likely completion
(based on the prefix and unigram co-occurrence).
For detection purposes, we make the realistic as-
sumption thatwi can only be interpreted as an
abandoned partial word after having encountered
the following word wi+1, which as the corpus
study suggested is almost certain to be a repair on-
setw1

rp. As opposed to leaving the partial word as
unknown vocabulary we can instead define a prob-
ability distribution of the completion probability
of each word in the vocabulary. So for a partial
wordwi, the likelihood ofw being its correspond-
ing complete word at the time of interruption is:

p
fluent(w | wi−2, wi−1, wi) =

1

Z
× p

KN (w | wi−2, wi−1)

× p
complete(w | wi)

(9)
4Many thanks for use of the excellent code at-

tached to Clark et al’s paper, available for download at
http://www.dcs.kcl.ac.uk/staff/lappin/smog/

whereZ is a standard normalisation constant to
ensure that

∑
w∈V ocab

pfluent(w | wi−2, wi−1, wi) = 1.

The probability ˆpfluent of most likely completion
of wi is then:

ˆpfluent = max
w

p
fluent(w | wi−2, wi−1, wi) (10)

The intuition here is that when they encounter a
partial word hearers attempt to find the most likely
fluent word that both maximises its likelihood to
be its completion and also of being a continuation
of the two preceding words. If we encounter “yes
I remem-”, the probability of the completer’s best
guess will not be as low as if it was unpredictable,
such as after an utterance initial “T-”. Whenwi is
partial we use ˆpfluent in (10) for our fluency mea-
surepf , otherwise defaulting to our normalpKN

model.

Syntactic fluency measures Use of a standard
n-gram model conflates syntactic with lexical pre-
dictability. To remove lexical effects and focus
on syntactic effects only, we normalise for lexi-
cal probabilities by following Clark et al. (2013)’s
use of Weighted Mean Logprob (WML). WML di-
vides the logprob of the raw probabilities of all the
trigrams in the utterance so far over the summed
logprob of the component unigrams, normalising
by the length of the utterance so far. We intend
to use this incrementally and within local trigram
windows rather than for full utterances. So at word
wi, we define our syntactic fluency measure as:

WML(wi−2 . . . wi) =
1

n

logp
f
TRIGRAM (〈wi−2 . . . wi〉)

logp
f
UNIGRAM (〈wi−2 . . . wi〉)

(11)

Repair classification by entropy measurement
If a low WML measure or lowpf can indicate dis-
fluency, a listener or annotator would then want to
compute how similar two contexts were in order to
infer the class of repair. To do this using trigram
contexts we need a distribution of continuations
after each word in repair utterances to be avail-
able, which we will refer to asθf (w | wi−1, wi).
We can then take the entropyH(θf) to give us a
measure of uncertainty in the distribution.

To measure syntactic and lexical parallelism
between two words we measure the Kullback-
Leibler (KL) divergence (relative entropy) be-
tween two different distributions ofθf . This mea-
sure of parallelism will be particularly useful for
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Figure 1: WML fluency measure for training data (left) and heldout data (right)

classification when comparing theθf of reparan-
dum and repair boundary words, as will be ex-
plained below.

Hypotheses For the incremental processing of
self-repair detection and classification, in terms of
our fluency and parallelism measures, we hypoth-
esise the following:

1. Detection: Repair onsetsw1
rp with their

context will have significantly lower mean
pf values than non-repair transition trigrams
(lower lexical-syntactic probability), and ex-
hibit considerably bigger drops inWML

(lower syntactic probability) than other flu-
ent trigrams in the utterance so far, caused by
a partial word followed by a fluent one, or
other syntactic disfluency.

2. Reparandum start identification Process-
ing the utterance with the reparandum re-
moved appropriately will significantly in-
crease theWML of the utterance so far (sim-
ilar intuition to the noisy channel approach),
more so than other hypotheses forw1

rp.

3. Classification For repeats, the KL diver-
gence from the continuation distribution af-
ter the reparandum’s first word, i.e.θf(w |
wN
o , w1

rm), and that of the repair onset and its
cleaned context before the reparandum, i.e.
θf(w | wN

o , w1
rp), will trivially be 0 in re-

peats and repeat-initiated substitutions, will
be greater for other substitutions and higher
still for deletes.

4. Partial word repair classification We pre-
dict repairs with reparandum-final partial
words wN

rm with high entropy over possi-
ble completionsθfluent (see equation (9))

will be interpreted as deletes rather than
substitutions- in deletes the high uncertainty
of predicted complete word is interpreted as
‘cancelled’.

5. Repair end detection/final classification: In
repeats, the continuation distribution at the
reparandum-final wordwN

rm (i.e. θf(w |
wN−1
rm , wN

rm) ) will be maximally close to that
at the repair-final wordwN

rp (i.e. θf(w |

wN−1
rp , wN

rp) ) with KL divergence 0. In sub-
stitutions, the same KL divergence will be
on average higher than in repeats (though for
compound type repairs ending in repeats this
could still be 0), and the KL divergence for
deletes should be even higher.5 Substitutions
as a class may vary significantly within this
measure and in the KL divergence in hypoth-
esis (3), however one KL divergence should
be sufficiently lower than that of an average
delete, and one should be higher than 0 due
to them not being verbatim repeats.

Experiments At the time of writing we have in-
vestigated hypothesis (1) using the standard divi-
sion for the Switchboard disfluency detection task
for training and held-out data (Charniak and John-
son, 2001,inter alia),6 and for now omitting par-
tial words as per the normal task. After training
on a cleaned model (reparandum and edit-terms
excised) from the standard Switchboard training
data (100K utterances, 650K words), which when

5We approximate divergence betweenθf (w |
wN−1

rm , wN
rm) and θf (w | wN

rm, w1

rp) in deletes, due to
the lack of a repair phase; the distribution of continuations
after the repair onset (first non-reparandum word) is our best
approximation of the repair end.

6We reserve the normal test data files for future work.
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run over the same training corpus with disfluen-
cies included the model assigns a mean WML of
-0.432 (std.=0.262) to non-repair onset trigrams
and -1.434 (std.=0.388) to repair onsets. Encour-
agingly on unseen data, the standard held-out data
(PTB III sw4[5-9]*, 6.4K utterances, 49K words.)
there is still a significant difference: fluent tri-
grams had a lower mean, -0.736 (sd=0.359) while
repair onsets were similar to their training average
at -1.457 (std.=0.359)– see Figure 1. We suspect
the sparsity of clean data may have caused this
shift, so we would expect to see the effect main-
tain a healthy gap in testing with a larger language
models.

6 Discussion

We have described self-repair processing in terms
of probabilistic expectation violation and distribu-
tional distance in a fluent language model. We
argue this could be a more realistic model than
alignment driven self-repair detection posited in
state-of-the-art computational models, due to its
efficiency and lack of over-prediction. The re-
pair onset detection can be triggered with no la-
tency through using a simple language model. We
hope to show conclusively in future work that the
many different types of repair distinguished by au-
tomatic alignment in our corpus study can be cap-
tured by our simple information-theoretic model
of incremental fluency estimation and local repair.
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