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Abstract In addition to this structural vocabulary, from

here on we consider threpair onseto be the first

This paper describes a statistical corpus
study of self-repairs in the disfluency-

annotated Switchboard corpus which ex-
amines the time-linear nature of self-repair
processing for annotators and listeners in

word after the (possibly null) interregnum, and the
interruption pointas the transition labelled ‘+

between the reparandum and the repair. Within
this schema it is possible to distinguish three main

classes of repair:

dialogue. The study suggests a strictly lo- _
(1) “But one of [ the, + the ] two things that I'm

cal detection and processing mechanism

for self-repairs is sufficient, an advantage really. ..”

currently not used effectively under the Repeat (sw4356)

bonnet of state-of-the-art automatic dis- (2) “Our situation is just [ a little bit, + kind of
fluency processing. We then show how the opposite ] of that”

simple local fluency measures using mod- Substitution (sw4103)

ified language models can be strongly  (3) *“..the bank was suing them [ for,{tuh,} ]

because they went to get”
Delete (sw4356)

Intuitively, a repair seems likely to be inter-
preted as a delete (3) if the following word (the
repair onset) has no substitutional relation with its
reparandum before the interruption point, having

Statistical language modelling for self-repair has@n overriding or cancelling effect; substitutions
enjoyed good results for accurately detecting(z)- in contrast, do exhibit some substitutive prop-
edited words within repairs (Heeman and Allen,erty or parallelism; and verbatim repeats (1), al-
1999; Charniak and Johnson, 2001; Johnson anfdfost trivially, exhibit complete parallelism.
Charniak, 2004; Georgila, 2009; Zwarts et al., The interpretation of self-repairs by both an-
2010; Qian and Liu, 2013). However, these suchotators assigning bracketing on transcripts, and
cessful systems ignore the classification of the reliSteners assigning an interpretation function dur-
pair's function and interpretation; furthermore theing dialogue, is not trivial. One could argue that
models used are generally computationally comSimply checking for verbatim repetition for re-
plex, over-predictive, and unrepresentative of alispeats, syntactic constituent identity for substitu-
tener’s incremental interpretation process, raisingions — see Levelt (1983) — and otherwise posit-
questions of psychological plausibility. ing a delete, is a sufficient classification protocol.
Beginning with classification, we consider the However there are many different possible sub-
structure and taxonomy of first-position self- classes, and gradient effects are exhibited in judge-
repairs, following the annotation scheme first pro-ments of the classification of delete or substitution.
posed by Shriberg (1994) and the Switchboard dis&S We have found in preliminary annotation exper-

fluency corpus (Meteer and Taylor, 1995) annotalMents, annotators do not agree on each decision.
tion protocol: The following examples show possible alternative

interpretations (italicized) to the Switchboard an-

notations:
Isw* are conversation numbers in Switchboard.

indicative of repair onset detection, and

how simple information theoretic mea-

sures could characterize different classes
of repairs.

1 Introduction

John and Bill [like -+ {uh}
—— —~—

love] Mary
.. S~ M~
original utterancereparandum  interregnum repair continuation
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(4) “and [there’s, +?] it's ] completely 2 Previous Work
generic.”

Substitution or delete? (sw4619) Corpus analysis of Switchboard Shriberg and

colleagues (1994; 1996; 1998) have done exten-

(5) “amatter where priorities are [at, + ] sive work annotating and analysing the Switch-
placed?] o board corpus for repairs, editing terms and filled
Delete or substitution? (sw4360) pauses, using a reliable disfluency annotation

In terms of the incremental dialogue seman-scheme (Meteer and Taylor, 1995) (see above).
tics of these different forms, as Ginzburg et al.Shriberg (1994) creates a taxonomy of disfluency
(2013) discuss, there is a broad difference betypes: filled pause (FP), articulation disfluency
tween forward-looking (verbatim repeats, filled (ART), substitution (SUB), insertion (INS), dele-
pauses/editing terms) abackward-lookingnter-  tion (DEL), repetition (REP), hybrid disfluency
pretations (reformulation such as (2)). Deletes(HYB) and conjunction (CON), the last of which
utterance-initial forms of which are often called occurs between speaker utterances. HYB is an
restarts are more destructive than substitutionsimportant member of Shriberg's taxonomy due to
as they are driven by continuing the original ut-the plethora of combinations of these repair oper-
terance, rather than replacing or modifying theations in Switchboard, as we will show below.
reparandum. A speaker or annotator may infer a Shriberg (1996) compares the distribution of
more dramatic change of content in processing aisfluency types across three different dialogue
delete. Also in on-line detection, as they do not addomains including Switchboard. The most com-
here to well-formedness rules (Levelt, 1983), onemon type in all three domains is FP followed by
must use other mechanisms to process them.  REP. DEL, defined as a repair containing at least

We maintain the classification distinction be-one deleted word with no insertions or substitu-
tween substitutions and deletes, but the need faions, and SUB, defined as a repair having at least
gradient judgements between these classes is cleane substitutive relation to the reparandum with
due to the possible different interpretations of (4)-no deletes or insertions, were ranked 3rd and 4th
(5). Some repairs are more prototypical of theirin Switchboard respectively.
class than others. We address this in section 5. In terms of incremental processing, Shriberg

The second issue we wish to address is the timeshowed an interaction between the position of the
linear way in which people process repairs, a coninterruption point and the disfluency type: per-
straint which rule-based disfluency detection modword rates by position showed that the three most
els do not prioritise — even if they are embedded ircommon disfluencies (FP, REP, and DEL) were
incremental systems — as we will discuss belowmuch more likely to occur in initial position than
In consideration of working memory constraints, in medial position. The remaining types appear
it is much more likely that repair operations beginto be roughly equally likely in initial and me-
once the repair onset is detected, rather than conlial positions. Furthermore Shriberg and Stol-
stantly predicting a reparandum before any disflucke (1998) investigate retraces, which are either
ency has been encountered. Resolution can still bgerbatim repeats or repairs with one or more re-
as fast and automatic as psycholinguistic evidencpeated words. Fitting parameters over the entire
suggests (Brennan and Schober, 2001), but withdisfluency-tagged corpus, there is a logarithmic
out maintaining all possible repair paths. decay in the likelihood of retracing back one more

We investigate the intuitions of a local self- word as the number of words since the last utter-
repair detection and resolution mechanism withance or repair boundary increases. Speakers rarely
gradient interpretation through a corpus study andetrace more than one or two words. This relation-
language modelling. Our corpus study in sectiorship supports a claim for a very local strategy for
4 observes the frequency of the three main classagpair resolution.
and their subtypes in Switchboard, and the inter-_ = _ _
actions of repair class distribution with features>tatistical sglf-repaw-detectlon In s.tate-of.-the-
of their local utterance contexts. We then presen’f‘_rt self-repair detection on transcripts, Qian and
a potential model of incremental repair detection

Liu (2013) achieve the best reported perfor-
and and interpretation in section 5, based on inforinance o_n t_he Switchboard d|sﬂuen_cy test cor-
mation theoretic measures pus, achieving an f-score for detecting reparan-
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dum words of 0.841. They use a three stedor templates— the fact that the repeat sequence,
detection system using weighted Max-Marginws,w, is the most common repair structure may
Markov (M3) networks: (1) detection of edit- be very useful for an incremental classifier, but
termsffillers/interregna (2) detection of reparan-there is a long tail in the distribution of repair
dum words, and (3) refining the previous stepsstructures: they report that 1,302 modification re-
using a cost-sensitive error function. Georgilapairs (non-deletes) take on 160 different repair
(2009) introduces a post-processing method of Instructures in the TRAINS corpus, with only 47
teger Linear Programming (ILP) to improve over- (29.4%) occurring at least twice. To combat this
all accuracy of various off-the-shelf methods, re-they use over-prediction of templates, initially pro-
porting an f-score for detecting reparandum onsetiding high recall with low precision, then fil-
words at 0.808 and repair onsets at 0.825 for &r out unlikely candidate repair structures us-
CRF model. While these results are impressiveing lexical, POS and intonation features. They
the systems do not operate incrementally: theynclude a feature encoding that a repair has al-
maximise the overall likelihood of tag sequencesready been detected in the utterance: in TRAINS,
in utterances, using utterance-global constraints35.6% of repairs overlap. Utterance-initial can-
rather than focussing on incremental accuracy. celling repairs (re-starts), were particularly prob-
Zwarts et al. (2010) describe an incremen-lematic to identify — we suspect through lack of
tal version of Johnson and Charniak (2004)'sPOS- or word-level parallelism and available tem-
noisy channel model. The detector uses a biplates, which can be exploited in repeats and sub-
gram language model trained on roughly 100K ut-stitutions, but not for deletes. Heeman and Allen
terances of reparandum-excised Switchboard dataso report very high accuracy for detecting dis-
for its “cleaned” language model. Its channelcourse markers/editing terms (both as interregna
model is a statistically-trained S-TAG which hasand as forward-looking repairs), identifying 97%
simple reparandum-repair alignment rules for itsof them with 96% precision.
non-terminals (copy,delete,insert,substitute), pars- _ ]
ing all possible repair structures for a given utter-3 Approach: locally triggered repair
ance hypothesised in a chart, before pruning the —detection and classification

unlikely ones. It performs equally well as the , \he hopular automatic detection task, while in-

non-incremental model by the end of each uttery emental systems exist, they use over-prediction,

ance, ac;hieving an f-score 9f 0.77.8.forthe SWitCh1arge chart storage and filtering (Zwarts et al.,
board disfluency task, and is modified to make de»n10: Heeman and Allen 1999). A parsing chart
tections early. They report the novel incremen-qeq solely for disfluency structures positing ev-

tal eva_luatiqr_1 method_ dfme-t(_)-d_etectiorior COI-  ery possible repair path grows approximately cu-
rectly identified repairs, achieving an average Ofbically with the length of the utterance. Also,

7.5 words from the start of the reparandum anc{ZWarts et al., 2010)'s TAG parser also has a
4.6 from the start of the repair phase, longer than;n_time complexity ofO(N?). This complex-
the average repair length. They also mtroducqty blow-up seems cognitively implausible, partic-
delayed accuracya word-by-word recall evalua- 5y given the relative sparsity of repairs. In ad-
tion of the gold-standard disfluency tags from thedition, these approaches cannot easily deal with

point reached utterance so far, reporting recall "brocessing embedded repairs realistically, as a
one word histories being 0.578, steadily increasingsia c of charts would be required, further increas-
word-by-word until 6 words back where it reachesing complexity— consequently these are ignored
0.770. o in training (Johnson and Charniak, 2004). Rather
An earlier incremental system was Heeman angh o positing all possible repair alignments, intu-
Allen (1999)'s multi-knowledge source approachis ey a listener is almost certain an utterance is a
which employs templates of repair structureS,qn renair before the repair onset, so a backtrack-
W|t_h|n a complex_ incremental language mo_del.ing mechanism employed upon interruption point
This performs slightly worse than the noisy- yetection seems more plausible. A more strictly

channel approach above at detecting reparanduffcremental detection should improve responsive-
words (recall 65.9% and precision 74.3%), with ¢ (time-to-detection) too.

the sparseness of the data providing problems e clear omission in state-of-the-art systems
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is repair classification. We assume dialogue par- The base-rate likelihood of a given word begin-

ticipants are sensitive to the function of a repairming a repair onset is p= 0.0366, that is on av-

for several reasons. One may make direct userage once every 27.3 words of speéchiVe do

of semantic dependencies in substitutions such asot distinguish between repairs crossing utterance
“| saw [one, +{no,} two] men”, but may draw boundaries and those marked within an utterance
more pragmatic and turn taking inferences aboutinit, treating them both as first-position within one

utterance-initial deletes (restarts). Also, recog-continual stream, however the difference between
nizing whether your dialogue partner sits eitherthese two types would be interesting to consider in
side of the statistically significant divide betweenfurther study.

‘repeaters” and “deleters” (Shriberg, 1996) mayRepair taxonomy by alignment To investigate

help alignment. Classification’s obfuscation in thethe distribution of the different types of repai.

standard NLP disfluency task is perhaps due toitg, ") 500 0c0n and Charniak (2004) in their
lack of clarity in definition. Verbatim repeats with-

. . . . use of minimum string-edit distance alignment.
standing, as mentioned above there is often dis-~~ ~ . :
Ignoring a handful of backwards-looking disflu-

crepancy between human annotations, suggestinﬁa1 _ hich tated within editing t
gradient effects; finding a system that can reliably cies which are annotated within editing term

classify the extent of the repair and its function in_s?quer:tces, Olf[r altljgner CIQSS'f'eS ;10’364 e>(<jam-
crementally is a difficult challenge. PIES. operates by mapping each reparandum

Given the problems with the various ap- word to a repair word, where each word must re-

proaches, we are motivated to find a psychologpelve at least one alignment with the best pos-

. . . sible score. In addition to their alignment cat-
ically plausible incremental method for process- . . :
) : o . egories we introduc€OMPLETEPARTIAL, which
ing speech repair types by considering the time-"> i .
. . e . . aligns prefix>complete word relations such as
linear order in which listeners receive the incom-,.. S i
. . ) j- + just”. We used the following scores
ing acoustic signal and then react: ) ) o .

to ensure that ‘weaker’ substitutional relations

1. Detection of thenterruption point triggered ~ are replaced by stronger oneKEPEAT:6, COM-
via some combination of a partia| Word, an PLETELPARTIAL:S, SUB[same POS]:4, SUB[same POS

edmng term forming an interregnum or char- first letter]:3, SUBJarbitrary]:2, DELETE:1 and INSERT:1

acteristics of the repair onset. We decided that aSOMPLETEPARTIAL is a partial

repeat it should be selected as a stronger alignment

over asuUB[same POS]

_ _ _ o The most frequent aligned structures extracted

3. Possibly simultaneously with (2), estimation 4re shown in Table 1: we split the structures be-
of the repair end via detection of a further yeen the broad classes of verbatim repeats, sub-
repair, a fluent continuation or the end of thegiy tions and pure deletes (no repair phase anno-
utterance; interleaved with (1) and (2), the ré-4te) in order to get the most prototypical deletes
pair's classification as judged by the Switchboard annotators.

1139 different alignment sequence types were

In the remainder of this paper we present d. with onlv 38.9% of - |
corpus survey in section 4 and a proposed ap-Oun » With only 38.9% of types occurring at jeast

proach for modelling repair in section 5 investi- twice, ,a figure higher than H(_aeman and All_en
gating these stages. (1999)’s reported 29.4%, most likely due to a big-

ger corpus size. As can be seen, the majority of

4 Self-Repair Distributions in types are within substitutions, which have a long
Switchboard tail of compound types — the 10 example substi-

tutions shown only constitute roughly half of all

Our initial repair distribution study uses the stan-gypstitution occurrences. Deletes were the rarest,
dard Switchboard training corpora (all conversa~—-———— e the | dof A

. " % We exclude the first word of every utterance that is not
tion numbers sw2*sw3* in the Penn Treebanka continuation, as you cannot begin a disfluency repair ini-
[l release), plus the non-Treebank Switchboardiation across these boundaries.100 repairs’ repair onset
files, giving a total of 972 transcriptsy196,600 SPQSF at rt]he SarEe W?rd adS an meedgedhrepalr,bso Sflmply
utterances~1.28M words, from which we extract 2\/ding the number of word transitions by the number of re-

) } pairs annotated would give a slight, but insignificant, bhaos
40,485 self-repairs based on the annotations. raw likelihood.

2. Estimation of reparandum start position
through some backward-looking process.
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y = 0.938z 72995 R? =

0.9956);

Repair class Most Frequent repair types (% overall repairs)
| do —— you
re4 req req
| do —— you
Repeats (56.79%) 46.2% 8.2 %
+interregnum=11.96% of class; had a similar
reparandum=1.23 (std=0.53, power can send n —— a
Yy = 1472291*4'425, re’% re;? re’% re;% re% re;% re;?
R2 = 0.9565); had —— a similar can send in a
1.5% 0.3%
firm d-
suq completeﬁpartial
office don't
Substitutions 10.2% 3.3%
(3655%) +interregnum=18.6%5% the
of class; reparandum=1.78 (std=1.16, l —— guess inser
powery = 1.04547 2593, req su$ req
R? = 0.9227); just ———  the
| think
1.8% 1.4%
in
I just insert
P o e
re
in ——— the
|
1.3% 1.0%
they're
insert they've never
su§
su§ req
they should
they never
0.9% 0.9%
the that may
insert . .
y' o 4 “ q del
kind —— of ——— the |
0.7% 0.7%
and i ————— dont
del gel del
Deletes (6.66%) eT eT
+interregnum=0.7% of class; when normal
reparandum=1.35 (std=0.88, power 50% 08%

Table 1: Distribution of the most frequent repair disfluesdn Switchboard
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conflicting with Shriberg (1996), but mainly due ily complex: a locally triggered recovery mecha-
to our definition covering pure deletes only. nism does not have far to backtrack. Repeats and

While building a rule-based repair grammar isdeletes are frequently short so their repair onset
not what we advocate in this paper, it is worth not-and reparanda will often fall within a bi- or tri-
ing the observed alignment sequences can be corgram: for example, presuming perfect interreg-
pressed into 194 different operation sequence painsum and edit term recognition, a trivial repeat-
such as $UBr,—;-R,,—j) REP(r,,-R,)], in this  word featurew; = w;_; captures 46.2% of all
case representing a substitution alignment from repairs. Use of such local alignments may vyield
words back from current reparandum indexo a  high precision, but we need a more general way
repair word;j words back from current repair index of detecting interruption points in a local n-gram
n, followed by a repetition alignment between thecontext which can also capture longer repairs, as
current indices. In terms of coverage, due to thewill be discussed below.

sparsity of most alignment sequences, the streng . 0 .
of Johnson and Charniak (2004)’s generative tEmbedded repairs 11.9% of all repairs are em-

TAG grammar approach over a template based Ontéedded inside a longer structure — this divides be-

(Heeman and Allen, 1999) becomes clear — for exEWeen 9.9% chaining repairs, embedded within

i 0
ample the approach allows the most frequent re'Ehe reparandum phase as in (6), and 2.0% nested

pair type, repeats, to have high likelihood within aWIthln the repair phase of a longer repaitwhile

e ) . these appear to need more complex resolution
repair ‘grammar’, regardless of their length. . L
mechanisms, which is presumably why they are

Reparandum lengths First-turn repairs tend to ignored in the training phase and evaluation of au-
be very short, with a mean reparandum length ofomatic disfluency systems, they need not be pro-
1.44 (partial) words (pop. st.dev = 0.88). Ascessed as hierarchically embedded structures by
with many linguistic phenomena, their length dis-listeners on-line. They are frequently short, with
tribution can be characterized as an inverse powanean reparandum 1.28 words long (std=0.67), and
law: a functiony = 1.71972z=36!, wherex is the  so can be resolved very locally, again in a short n-
reparandum length in words andis the average gram context, and may provide an immediate fea-
relative frequency of that length, has a goodnessture for following repair onsets. Intuitively an in-
of-fit R? = 0.9635 up to length 9. Reparanda ofterruption point indicates speaker trouble, so the
1 or 2 words account for 90.8% of repairs andlikelihood of a consequent interruption point in the
lengths 1-3 account for 96.5%. Repeats (1.23ollowing word transitions increases.

words) and deletes (1.35 words) are significantly _ _

shorter than substitutions (1.78 words), which alsd®) “[[ This, +it, ] + they ] are really. ”

exhibit a shallower power-law decay —see Table 1~ Embedded chaining substitution- (sw3389)

for the figures. Partial words as interruption point indicators

With the vast majority of reparanda being . SRR )

The most reliable lexical indicator of a repair onset
1-3 words long, a very local model of context . : . .
. is a preceding partial word. According to the tran-

could be used to capture them. As mentioned, . o . .
. . Scripts, the likelihood of a repair onset following
previous approaches using sequence-based lan- | . . o
. oS . . a partial word that is not utterance-final is 0.925,

guage models in combination with repair gram- : Lo S

boosting the likelihood significantly more than the
mars and templates have had success, but there

) : : . : presence of an interregnum, as will be discussed
is scope for incorporating repair detection more

directly into an n-gram model (though not nec_below. Furthermore, the remaining 0.075 of prob-

. ; ability mass for continuations, upon inspection,
essarily through _Hldden Event_ Langua_ge I\/IC)de'Siook like mis-transcriptions. Reparandum-final
(HELMS) (Georgila, 2009), which require longer . . .

. partial words are present in 10.4% of repairs. Fur-
contexts and more training data). Furthermore

as Shriberg and Stolcke (1998) showed, the ”keEhermore, the completion of a s_mgle partial word
i ) . is one of the most frequent repair structures (3.3%
lihood of retracing back one more word in re-

traces decays logarithmically with the number ofOf all repairs). The probability of the partial word

words into a fluent word sequence, so the need SWhile Shriberg (1994)'s thesis and Meteer and Taylor
: : 1995)’s annotation attempted to formalise these, theyarem
to store all possible reparandum sites before ha\é problem for consistency of annotation- it is not alwayscle

ing heard an interruption point seems unnecessaivhether they should be annotated as nested or chaining.
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being a deleted reparandum also rises from theairs. The filled pause “uh” and discourse marker
overall average rate 0.066 to 0.171. “you know” are the most indicative, increasing the
This is clearly a very useful feature for detectionprobability of a repair from the base rate to 0.155
and classification. Charniak and Johnson (2001and 0.1 respectively. These two items are also
posit an optional phase between the reparandurtine most frequently occurring within repairs (9.0%
and the interregnum called the ‘free-final’, consist-and 2.6% of repairs have them, respectively). The
ing of a sequence of partial words of any length,lack of predictive power even the most frequent in-
which, when used as a training feature for anterregna forms have to predict repair means inter-
edited words classifier, can improve the detectiomegnum presence does not provide a reliable fea-
of repairs. Subsequent work does not use partigure for detection on its own; however as it has
words in an attempt to simulate a more realisticsignificant interaction with repair type, it is a use-
testing situation for dialogue systems. While weful feature for repair classification.
cannot make direct predictions here without the

acoustic data, we investigate how a simple worg____form p(repaitform) | p(form|repair)
completion predictor could be a fair approxima-| (fluent word) 0.037 0.861
tion to an annotator’s incremental processing i “uh” 0.155 0.090
section 5. “you know” 0.100 0.026
“well” 0.080 0.006
Interregnum vocabulary Another incremen- “| mean” 0.074 0.005
tal indication of repair, which has been estab “um” 0.061 0.003
lished in previous empirical work (Clark and “yeah” 0.038 0.002
Fox Tree, 2002) and in formal models of dialogue “or” 0.017 0.002
(Ginzburg, 2012), is the presence of a convenr  «ike” 0.014 0.003
tional editing term for signalling speaker trouble. “gq” 0.005 0.001
The editing signals that constitute most repair in- “actually” 0.025 0.001

terregna have a characteristic vocabulary, a fa
Heeman and Allen (1999)'s system exploited to
detect them with almost perfect accuracy.

In Switchboard, only 13.9% of revision repairs

have an interregnum, so it is not a strong repaifyaving observed some distributional properties of
indicator, which is surprising given its important the form of self-repairs that could contribute to
role in formal and empirical models. However, gn_jine detection and classification tasks, we now
if one is identified correctly, its presence signalSintroduce a simple information theoretic model
information about the type of upcoming repair: yhich incorporates some of them, including local
the likelihood of a substitution rises to 0.499, andrepair detection based on language model proba-
the likelihood of a delete reduces .01, which bility and partial word presence. This model can
could be due to deletion’s more destructive semanpe sed orthogonally to alignment approaches dis-
tic ‘cancelling’ function on the reparandum. There cyssed above, and should provide scope for more
are more substitutions with interregna than repeatgtficient, realistic and robust implementations.

in raw frequency and significantly more relative  \ve model the task of listeners and annotators as
to their class size (2752/14755 (18.65%), versusgepresenting the following constituents of a repair,

—~

5 Language models for on-line repair
processing

2741/22921 (11.96%)7,=322.9,p<0.0001). ignoring interregna and other editing terms:
Interregna share a virtually identical vocabulary

to editing signals in the more commatridged Nt 1 N 1 N1 1

(Heeman and Allen, 1999) oforward-looking - Wo [Wyg o Wiy + Wy Wl (7)

(Ginzburg, 2012) repairs which comprise an edit- Intuitively and in accordance with the process-
ing signal followed by a fluent continuation to ing order outlined in section 3, the first detection
their preceding context, rather than a disfluent oneproblem is recognizing the repair onmkp (orw!

Focussing here on interregnum vocabulary distrifor deletes). For this we intuit the most impor-
butions, we obtain the probabilities in the belowtant factor is syntactic disfluency, that is, viola-
table, showing the predictive power of the vocab-tion of syntactic expectation. Following a detec-
ulary item and its relative frequency within all re- tion of this violation, the task is to find the start of
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the reparandum — which can be seen as maximis- _ o
ing the fluency of a sequence including’w?, — where Z is a standard normalisation constant to

o o ensure thal Fluent | wi—g, wi—1,ws) = 1.
while simultaneously beginning to compute the re- Ewev“‘ibp (w ] wi-s b wi)

pair's parallelism to the reparandum onsel .. gpzeu'pirsot%aetr)]i'litypfluem of most likely completion
The final task is to find the repair end), (or w! ’ '

for deletes) and classify the repair through com-  priuent — max P (w0 | wieo, wim1, w;) (10)
puting its parallelism to the reparandum up to its
endw’ . We discuss the tools we use to model

A : . The intuition here is that when they encounter a
violation of expectation and parallelism below.

partial word hearers attempt to find the most likely
Fluency measures for incremental repair on- fluent word that both maximises its likelihood to
set detection We require a language model that be its completion and also of being a continuation
can predict which word, or class of words, hear-of the two preceding words. If we encounter “yes
ers are likely to hear next in on-going dialogue.! remem-", the probability of the completer’s best
Although we currently lack robust large-scale pre-guess will not be as low as if it was unpredictable,
dictive incremental parsers — though see (Eshghsuch as after an utterance initial “T-". When is

et al., 2013; Demberg et al., 2013) for on-goingpartial we use/!“<" in (10) for our fluency mea-
efforts — we can use an approximation to incre-surep’, otherwise defaulting to our normaf<"
mental lexical and syntactic fluency with n-gram model.

language models and insights from recent wor .
. A yntactic fluency measures Use of a standard
on modelling grammaticality judgements (Clark et L .
n-gram model conflates syntactic with lexical pre-

al,, 2013). We train a trigram model with Kneser-dictability. To remove lexical effects and focus

Ney smoothing (Kneser and Ney, 1995) as our . . .
o 2 on syntactic effects only, we normalise for lexi-
principal default fluency measuremenit

cal probabilities by following Clark et al. (2013)’s
KN (w; | wi—a,w;—1) (8)  use of Weighted Mean Logprob (WML). WML di-
vides the logprob of the raw probabilities of all the
We can define an additional measure of fluencyirigrams in the utterance so far over the summed
based on the insights of the frequency of partialogprob of the component unigrams, normalising
words at interruption points in section 4. We trainby the length of the utterance so far. We intend
a simple word completion moderem#*t(w|w;)  t0 use this incrementally and within local trigram
which operates on any annotated partial wordvindows rather than for full utterances. So at word
prefix w; to provide a distribution over possible w;, we define our syntactic fluency measure as:
completions, and thus the most likely completion
(based on the prefix and unigram co-0CCUITENCe) sy a7 L (w;_s ... w:) = - LogpT prgran (Wiz .. ws)
For detection purposes, we make the realistic as- nlogpfrnreran (wiz - wi)l
sumption thatw; can only be interpreted as an )
abandoned partial word after having encountere®epair classification by entropy measurement
the following word w;.1, which as the corpus Ifalow WML measure or low/ can indicate dis-
study suggested is almost certain to be a repair orfluency, a listener or annotator would then want to
setw,%p. As opposed to leaving the partial word ascompute how similar two contexts were in order to
unknown vocabulary we can instead define a probinfer the class of repair. To do this using trigram
ability distribution of the completion probability contexts we need a distribution of continuations
of each word in the vocabulary. So for a partialafter each word in repair utterances to be avail-
word w;, the likelihood ofw being its correspond- able, which we will refer to ag/ (w | w;_1, w;).
ing complete word at the time of interruption is: We can then take the entrogy(6/) to give us a
measure of uncertainty in the distribution.

P’ (wi | wi—z,wim1) =p

Fluent 1 KN To measure syntactic and lexical parallelism
p (w | wi—2, wim1,w;) = = Xp~ " (w | wi—2, wi—1)
zZ l between two words we measure the Kullback-
complete . . .
x pPTEE (w | wi) Leibler (KL) divergence (relative entropy) be-

9) . L y . :
" “Many thanks for use of the excellent code or. Ween two different distributions @f’. This mea

tached to Clark et al's paper, available for download atSure of parallelism will be particularly useful for
http://ww. dcs. kcl . ac. uk/ st af f/ | appi n/ snog/

Proceedings of the 17th Workshop on the Semantics and Pragmatics of Dialogue, December 16-18, 2013, Amsterdam, The Netherlands.



.
x10

s I Repair Onset
I \on-Repair

Frequency (Repair onsets scaled)

25 2
WML (logprob of trigram normalised by unigram freq.)

-1.5 -1 -0.5

Frequency (Repair onsets scaled)

8000

7000

6000

5000

4000

o
<3
S
=]

N)
>
=1
3

1000

B Repair Onset
] Non-Repair

-25 -2
WML (logprob of trigram normalised by unigram freq.)

-1.5 -1 -0.5

Figure 1: WML fluency measure for training data (left) anddoeit data (right)

classification when comparing tt#é of reparan-
dum and repair boundary words, as will be ex-
plained below.

Hypotheses For the incremental processing of
self-repair detection and classification, in terms of
our fluency and parallelism measures, we hypoth-
esise the following:

1. Detection Repair onsetsw;, with their
context will have significantly lower mean
p! values than non-repair transition trigrams
(lower lexical-syntactic probability), and ex-
hibit considerably bigger drops imV M L
(lower syntactic probability) than other flu-
ent trigrams in the utterance so far, caused by
a partial word followed by a fluent one, or
other syntactic disfluency.

. Reparandum start identification Process-
ing the utterance with the reparandum re-
moved appropriately will significantly in-
crease thé&/ M L of the utterance so far (sim-
ilar intuition to the noisy channel approach),
more so than other hypotheses t@}rp.

. Classification For repeats, the KL diver-
gence from the continuation distribution af-
ter the reparandum’s first word, i.é/ (w |
w ,wl ), and that of the repair onset and its
cleaned context before the reparandum, i.e
07 (w | w),w},), will trivially be 0 in re-
peats and repeat-initiated substitutions, will
be greater for other substitutions and higher

still for deletes.
. Partial word repair classification We pre-

5.

will be interpreted as deletes rather than
substitutions- in deletes the high uncertainty
of predicted complete word is interpreted as
‘cancelled’.

Repair end detection/final classification In
repeats, the continuation distribution at the
reparandum-final wordv’Y, (.e. 6/(w |
wN=1 wl ) ) will be maximally close to that

at the repair-final wordw?), (i.e. 6/(w |
wh =1, wh) ) with KL divergence 0. In sub-
stitutions, the same KL divergence will be
on average higher than in repeats (though for
compound type repairs ending in repeats this
could still be 0), and the KL divergence for
deletes should be even higReBubstitutions

as a class may vary significantly within this
measure and in the KL divergence in hypoth-
esis (3), however one KL divergence should
be sufficiently lower than that of an average
delete, and one should be higher than 0 due
to them not being verbatim repeats.

Experiments At the time of writing we have in-
vestigated hypothesis (1) using the standard divi-
sion for the Switchboard disfluency detection task
for training and held-out data (Charniak and John-
son, 2001 nter alia),® and for now omitting par-

.~ tial words as per the normal task. After training
on a cleaned model (reparandum and edit-terms
excised) from the standard Switchboard training
data (100K utterances, 650K words), which when

*We approximate divergence betweef’ (w |

wiytwh,) and 67 (w | wh,,w),) in deletes, due to

the lack of a repair phase; the distribution of continuation

N 1

dict repairs with reparandum-final partial after the repair onset (first non-reparandum word) is our bes

N . . . approximation of the repair end.
words Wrm \_Nlth h;gh tentrOpy over possi 5We reserve the normal test data files for future work.
ble completionsg/“nt (see equation (9))
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run over the same training corpus with disfluen-v.
cies included the model assigns a mean WML of
-0.432 (std.=0.262) to non-repair onset trigrams
and -1.434 (std.=0.388) to repair onsets. Encour-
agingly on unseen data, the standard held-out da#
(PTB Il sw4[5-9]*, 6.4K utterances, 49K words.)
there is still a significant difference: fluent tri-
grams had a lower mean, -0.736 (sd=0.359) while
repair onsets were similar to their training average
at -1.457 (std.=0.359)- see Figure 1. We suspect’
the sparsity of clean data may have caused this
shift, so we would expect to see the effect main-
tain a healthy gap in testing with a larger Ianguag%
models. '

6 Discussion
J.

We have described self-repair processing in terms
of probabilistic expectation violation and distribu-
tional distance in a fluent language model. We
argue this could be a more realistic model than
alignment driven self-repair detection posited in

state-of-the-art computational models, due to it5,

efficiency and lack of over-prediction. The re-
pair onset detection can be triggered with no la-
tency through using a simple language model. W@Q
hope to show conclusively in future work that the
many different types of repair distinguished by au-
tomatic alignment in our corpus study can be cap:
tured by our simple information-theoretic model
of incremental fluency estimation and local repair.

M.
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