

A GLOBAL EXPERIENCE METRIC FOR DIALOG MANAGEMENT IN SPOKEN

DIALOG SYSTEMS

Silke Witt

West Interactive
550 S Winchester Blvd

San Jose, CA 95128

switt@west.com

Abstract

This paper presents a metric to automatically track

the experience of a caller in a spoken dialog sys-

tem up to the current moment in time. This metric

can be used for two purposes. Firstly, it can be

used by the dialog manager to adapt the call flow if

the metric reaches a pre-defined threshold. Second-

ly, it can be used to automatically score the caller

experience for each call. This paper will describe

the metric itself and how to estimate the parame-

ters for this metric in order to enforce the dialog

system to match a set of pre-defined rules as to

when to transfer a caller. Additionally, it will be

shown that these automatically derived scores cor-

relate well with human ratings and can be used as

an automated method to measure overall caller ex-

perience in a dialog system. Lastly, data from three

live systems utilizing this metric will be presented

to show how system performance can be increased

by using the metric to aid dialog management.

Index Terms— caller experience metric, dialog

management, spoken dialog systems, spoken di-

alog system evaluation, speech recognition, voice

user interface design.

1 Introduction

Generally, in commercial spoken dialog systems,

two of the main hurdles in terms of cost efficiency

are the need to handcraft every single interaction

with the system as well as the requirement that a

single system has to handle many different types of

users. Such users could be novices or experienced

users, cooperative or distracted users, or callers

from quiet versus noisy environments etc.

It is due to these hurdles, that no matter how well

designed and fine-tuned a spoken dialog system is,

there will always be a percentage of callers that

will have difficulties interacting with a system and

thus will be unsatisfied with the experience. Gen-

erally, in dialog systems that automate call center

functionality, the balance between automation rate

and caller satisfaction is controlled by rules that

determine when to transfer a call to a call center

agent. The by far most common rule is that after 3

consecutive errors in one dialog state, the caller is

being transferred to an agent. However, this ap-

proach has the drawback of not taking into account

the caller experience up to the dialog state where

the errors are happening. This transfer rule also

doesn‘t take into account any other call event type

except the specific error type such as a rejection or

timeout error. In other words, the transfer decision

is based on a single event type as opposed to utiliz-

ing multiple features for the decision making.

There have been several previous approaches to

measure caller experience and/or to predict prob-

lematic calls. Paek, 2001, presents a comprehen-

sive summary of the possibilities and challenges in

evaluating spoken dialog systems. Walker et al.,

1999 and 2002, describes a method to use the in-

formation of the first two to four dialog turns to

predict if a caller will experience difficulties, but

this method does not apply to every possible dialog

state in a system. Evanini et al., 2008, presented a

method to calculate the caller experience automati-

cally for an entire call. However, the calculation is

derived from application logs after a call is com-

pleted. Levin et al., 2006, presented a method to

calculate at each turn in a system whether the cost

of transferring is less than the cost of keeping the

caller in the system.

SemDial 2011: Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue, pages 158–166.
Los Angeles, California, 21–23 September 2011.

158

Likewise the metric presented here is being eva-

luated at each dialog turn in order to decide wheth-

er to continue the current dialog strategy or to

switch the dialog strategy. The difference to Eva-

nini is that the metric is calculated at each dialog

turn and the transfer decision is based on a thre-

shold around the caller experience rather than the

cost.

In summary, this paper will describe the use of a

caller experience metric for two main purposes.

I. We will show how such a metric can be

used to automatically assign a caller satis-

faction score to each call at the end of each

call.

II. We will demonstrate the impact on spoken

dialog system performance of using such

metrics to aid the dialog manager‘s deci-

sion on the next turn in the call.

This paper is organized as follows: Section 2 pro-

vides the necessary background on human caller

experience ratings, call event types and the rela-

tionship between these two. Section 3 presents the

core algorithm and parameter estimation method

for the caller experience metric (CEM). Section 4

discusses the correlation between such automated

caller experience scores and human scores. Section

5 presents the results of implementing the CEM

algorithm in three live spoken dialog systems and

lastly, section 6 covers the conclusions.

2 Caller experience ratings and call event

types

The purpose of the CEM method is to create a me-

tric for the experience of a caller in a spoken dialog

system up to the current dialog state. To do so re-

quires accounting for all possible event types that

can occur at each dialog state. These event types

are:

 Successful turn: The system successfully

recognized and also confirmed the caller‘s

utterance.

 Rejection error: The recognizer could not

understand the caller utterance with suffi-

cient confidence and the utterance got re-

jected.

 Timeout error: The system did not detect

any caller speech during a predefined time

period, typically around 5secs.

 Disconfirmation: The caller disconfirmed

the recognition result of the system.

 Agent request: The caller requested to

speak with a call center agent, this can typ-

ically be interpreted as a sign that the call-

er does not want to use the system.

The aim of CEM is to create an automated score of

the caller experience at the end of a call that can

replace a human rating. To do so, requires measur-

ing the correlation between the automated CEM

score and human ratings. As part of that work, we

first generated expert ratings for the same dialog

system that we are generating the CEM scores for.

2.1 Human caller experience ratings

It is a common practice to evaluate the caller expe-

rience that a spoken dialog system provides by

having experts score whole call recordings of users

interacting with the system in question.

The purpose of the automatic scoring metric pre-

sented in section 3 is to replace or at least reduce

the need to have human experts score whole call

recordings. In order to be able to compare the per-

formance of the automatic scoring method intro-

duced in this paper, we had a human rater score

100 calls for a cable application on a scale of 1 to

5, with 1 being the most positive. The rater was

experienced in rating call recordings of this nature

and received detailed rating instructions for this

particular rating task. The instructions included to

count the number of negative call events during the

call as well as judging the likelihood that the caller

will use the system again, i.e. judging the tone of

voice of the caller and how the call is going.

2.2 Typical call event patterns for each rating

category

In order to understand the relationship between call

event sequences in a call and the rating a human

assigned to a given call, Table 1 shows the most

common call event sequences for each of the 5 rat-

ing types and their associated frequency. These call

event sequences and associated frequencies were

generated from 23,000 call logs for a cable televi-

sion company.

159

Hu-
man

Rating
Example event sequence

Frequen-
cy

5
agent, rejection error, re-

jection error, agent
0.1%

5
rejection error, succ. turn,
rejection error, rejection

error
0.3%

4
agent, disconfirm, succ.

turn, agent
0.03%

4 disconfirm, agent, nomatch 0.09%

4 disconfirm, disconfirm 0.13%

4
rejection error, succ. turn,
rejection error, succ. turn

0.9%

4
succ. turn, rejection error,
rejection error, succ. turn

0.3%

3
rejection error, rejection

error, succ. turn, succ. turn
1.0%

3
agent, rejection error, suc-

cessful turn
1.3%

2
Succ. turn, succ. turn, re-
jection error, succ. turn

0.3%

2
agent, succ. turn, succ.

turn
2.4%

2
Timeout error, succ. turn,

succ. turn
3%

1 succ. turn, succ. turn., 22%

Table 1: Example event sequences for calls with negative

caller experience

From the event sequences that lead to negative call

ratings it can be seen in Table 1 that typically there

are at least two negative events such as a rejection

error and a disconfirmation. However, two nega-

tive events alone do NOT mean that a call will lead

to an overall negative caller experience. Rather, the

call experience rating depends on the ENTIRE se-

quence of events throughout a call. For example, a

sequence of a rejection error, successful turn, re-

jection error and again a successful turn can lead to

a still acceptable caller experience whereas a rejec-

tion error followed by a disconfirmation would

lead to a sufficiently negative experience, so that it

is advisory to transfer a caller out versus keeping

them in the system. In other words, the judgment

of a call is not limited to the events in a single di-

alog state but rather based on the caller experience

across several states.

From Table 1 it can also be seen that event patterns

for calls with a positive caller experience predomi-

nantly have successful turns with only the occa-

sional rejection or timeout error or even only suc-

cessful turns.

3 Caller Experience Metric (CEM)

Ideally, those callers who are likely to be frustrated

and unlikely to be successful in completing their

goal are the ones that should be transferred to an

agent or presented an alternative modality like

touch-tone. On the other hand, callers who might

have had occasional recognition or turn-taking er-

rors but otherwise are making progress should

continue to be treated as before by the dialog man-

ager.

This can be modeled with what we will call a ‗call-

er experience metric‘, which models the entirety of

a caller‘s interaction with a system up to the cur-

rent moment in time as opposed to the interaction

at a dialog state level.

Figure 1: CEM architecture describing the CEM calculation at

each dialog turn

Figure 1 depicts on overview of this caller expe-

rience metric architecture. At every turn in a di-

alog, the value of this metric is as one of the

decision criteria for the dialog manager to decide

on the next action. Possible actions are to continue

the current mode, to transfer the call or to switch

modality, i.e. switch to DTMF, to reduce the

prompt readback speed, to change the prompting

style and so forth.

3.1 CEM Definition

Let S be a set of weights for all call event types or

setback features that are taken into account for this

metric. Such events might be any number of events

that describe the caller experience at a given dialog

state and are available at runtime.

160

The set of call events types used in this paper, sk,

are:

 Rejection error: sRej.

 Disconfirmation: sDis

 Timeout error: sTO

 Agent Request: sA

 Successful Recognition Event: sSuc

Let d be a discounting variable to make things fur-

ther in the past less important. Thus, if a caller had

a couple of errors followed by several successful

recognition steps, the errors further in the past have

less impact.

Then, at each dialog turn i, the experience metric

gets calculated as

Where CEM(0) = 0 and sk(i) denotes the weight of

caller event type sk, in turn i. After calculating

CEM(i) at each dialog turn, the dialog manager

will also check if CEM(i) is above a predefined

threshold. If the score is above the threshold, the

dialog manager will take the predefined action

such as transferring the caller out of the application

or switching to a different modality such as touch-

tone instead of continuing the call in its current

mode.

3.2 CEM Parameter Estimation

This section will present a method to estimate the

parameter set S as defined in section 3.1.

 In order to use this caller experience metric as a

dialog management mechanism, one can define a

number of rules that describe for which kind of

event sequences a call should stay in the applica-

tion or current modality and for which kind of

event sequences a call should be transferred or get

some other special treatment. This step is impor-

tant in a commercial deployment, because clients

tend to want to define under which circumstances a

caller will be transferred. In other words, this me-

thod presented here allows to predefine the system

behavior BEFORE a system goes into production

(and no statistics on caller behavior are available)

and it allows clients (for whom the system has

been built) to define the event sequences when

callers should be kept in a system and when trans-

ferred out.

 Based on frequently observed event patterns as

shown in Table 1, let us choose six example condi-

tions, where three conditions represent negative

event sequences after which a call should pass the

threshold. Let‘s also assume three conditions for

positive or acceptable event sequences which

should yield a CEM(i) score just below the thre-

shold, i.e. a call should continue in its current

mode. The choice of the latter three equations

should be for moderately successful event se-

quences.

This is so because a call with only successful turns

would always be well below the threshold, whereas

we are mostly interested in estimating a set of

event type weights that will yield a global score

just below the threshold for the acceptable se-

quences and a score above the threshold for nega-

tive event sequences.

 For the example here, let‘s assume the follow-

ing six event sequences:

(1) CEM(i) should be above the threshold after

2 Disconfirms

(2) CEM(i) should be above threshold after 1

Disconfirm, 1 agent request and 1 Rejec-

tion error.

(3) CEM(i) should be above threshold after 2

Rejections, 1 successful turn, another re-

jection and then a 1 timeout.

(4) CEM(i) should stay below threshold for: 1

timeout, 1 successful turn, 1 rejection and

an agent request.

(5) CEM(i) should stay below threshold for: 1

disconfirmation, 1 successful turn, 1 time-

out

(6) CEM(i) should stay below threshold for 1

successful turn, 1 rejection, 1 timeout, 1

successful turn and 1 timeout.

Note that these sequences are examples only in

order to illustrate the process of parameter estima-

tion. These equations need to be separately chosen

for each dialog system before it goes into produc-

tion.

Now, let T denote the decision threshold.

Then, the CEM(i) score after the completion of

these event sequences can be calculated by recur-

sively plugging all events into the CEM formula.

Doing this for the 6 example sequences yields the

following set of inequalities:

161

I.

II.

III.

IV.

V.

VI.

In order to convert these inequalities into a set of

equations, let ε be an offset value by which the

CEM score should be above the threshold in order

to meet the transfer condition for the first three

event sequences and below the threshold for the

last three event sequences. With this, we arrive at

the following equation system:

I.

II.

III.

IV.

V.

VI.

Now, let s be a vector of the to-be-estimated event

type weights, i.e.:

And let ε be a delta vector to reflect the score after

a given event sequence to be below or above the

threshold:

Then, the set of six equations can be rewritten as a

vector equation:

Solving this equation system for the set of weights

s leads to:

And with this equation, we now have a

simple expression to calculate an estimate of s for

a predefined set of event sequence behaviors.

There are two requirements for this equa-

tion to be solvable:

First, the number of chosen call event se-

quences has to match the number of parameters to

be estimated so that F becomes a square matrix.

Secondly, the example call event sequences have

to be chosen so that the resulting matrix F will

have full rank and thus is invertible.

Assuming a discount factor and the offset

constant Table 3 shows the estimated pa-

rameter set for the solution of our six example eq-

uations above. These resulting parameter values

make intuitively sense. For example, disconfirma-

tions, which tend to have quite a negative impact

on caller experience, have the highest weight, whe-

reas the weight for an agent request is much small-

er, since such an event is caller initiated and

doesn‘t have quite such a bad impact on the caller

experience. A successful turn tends to improve the

caller experience and this matches the negative

weight for

Parameter Name Estimated value

 1.46

 0.66

 1.00

 -0.46

 0.80

 2.27

Table 2: parameter estimates for the example equation system

It is important to note that the weights listed in Ta-

ble 2, are only example results. The values of s

depend heavily on the choice of the six constrain-

ing equations as well as the default settings for d

and ε. The algorithm presented here can be seen as

a framework to estimate a set of caller event

weights that best matches the requirement for a

specific system.

3.3 Correlation with Human Scoring

The previous section discussed how to find a set of

weight parameters so that predefined set of exam-

ple call event sequences will result in the desired

call handling aka dialog management.

162

As described by Evanini et al., 2008, the agree-

ment between two raters, in this case between a

human and an automatic rater, can be measured

with Cohen‘s , see Cohen (1960). This correlation

metric factors in the possible agreement between

two raters due to chance, P(e). Let P(a) be the rela-

tive observed agreement between two raters, then

κ is defined as:

Since the ratings in this case are on an ordinal

scale, we used a linearly weighted in to account

for the fact that the difference between two adja-

cent ratings is smaller than the difference between

two ratings further apart.

Evanini et al., 2008 conducted an extensive study

that showed the correlation in the ratings between

human raters and also between the automated me-

tric and a human rater, so we know that

a) ratings by human judges correlate assum-

ing that the raters have been given reliable

scoring instructions

b) that it is possible to have automated me-

trics that can correlate with human ratings.

The purpose of this paper therefore is to validate

that the metric proposed in section 3 too can gen-

erate automated scores for calls that correlate with

human ratings, in addition to being a method to

aide dialog management.

In order to correlate the CEM score with the hu-

man ratings, the CEM score (which is a continuous

number) was converted to same discrete range of 1

to 5 as the human scores. For the human ratings we

used those 100 human ratings as described in sec-

tion 2. The discount variable d has been set to 0.9.

 Next, in addition to Cohen‘s κ, a different way

of looking at the correlation between the machine

and the human scoring is by measuring which per-

centage of call received the same rating between

the human rater and the machine and how many

calls received a rating that differs only by 1 point.

 Table 3 shows the κ value and the agreement sta-

tistics for different parameter sets. Each row

represents one parameter set S, the resulting κ val-

ue, the percentage of exact agreement between

human and machine, the percentage of agreement

differing by 1 and finally the total agreement. Total

agreement is defined as the sum of exact agree-

ment and agreement with difference of 1.

 The parameter set in row 1 is the parameter set

that was found via solving the equation system, see

section 3.2. The correlation and agreement is high

enough to say that the CEM scores correlate with

human scores.

 Next, the question arose, whether there exist

parameter sets that also fulfill the equation set but

possibly yield a higher correlation with human ra-

ters. To find this out, we manually varied the each

of the five parameters while keeping the other four

fixed. Row 2 in Table 3 shows the parameter set

that yielded the maximum κ value we found by

manually varied the weight parameters.

Parameter set # sRej sTO sA sDis sSuc κ

% Agree-
ment be-

tween
human and

machine

%Variance
by one be-
tween hu-
man and
machine

% total agree-
ment (up to a

difference of 1)
between hu-
man and ma-

chine

1 (estimate from Table
2)

1 0.8 0.66 1.46 -0.5 0.670 64 28 92

2 (max kappa combina-
tion)

0.9 1 0.6 1.5 -0.2 0.733 76.6 16.7 93.3

3 (example max overall
agreement)

0.9 1 0.4 1.5 -0.2 0.719 70 24.4 94.4

Table 3: Agreement between human and machine ratings for different parameter sets

163

Lastly, row 3 shows that parameter set found via

the manual variations that yielded the maximum

overall agreement between machine and humans as

opposed to the maximum κ in row 1.

 Figure 2 depicts the results of the manual pa-

rameter variations in more detail. For each graph,

only one of the caller event type weights has been

varied, while the rest has been kept constant. As

can be seen, the correlation between human and

CEM scores at call end is fairly high, independent

of the parameter values as long as they are within

the valid range. It is interesting to note that the

agent requested related weight and especially the

rejection related weight have the most influence on

the degree of agreement with human scores.

Figure 2: Dependency of Kappa on different caller events

 In future work, we will look at optimizing κ via

statistical methods in the case that human ratings

are available.

The results from Table 3 and Figure 2 show

that the correlation between human and CEM

scores at call end is high enough, so that the CEM

score at call end can be used as an automated rat-

ing mechanism in spoken dialog systems.

4 Live system implementation results

The CEM scoring was implemented in three live

commercial systems. This section will present re-

sults for using this metric for both dialog manage-

ment and measuring caller satisfaction.

4.1 Results for System 1

One of the live systems where the CEM scoring

described in this paper is currently implemented is

a call routing application in the cable television

domain.

 Generally speaking, high caller satisfaction can

be represented by a low average CEM score at call

end. On the other hand, high automation can be

measured by a minimum number of failed calls.

Failed calls are defined as calls where the CEM

score was above a transfer threshold.

Given these definitions, Figure 3 now depicts the

relationship between the automation rate (which is

the inverse of the %failure calls shown) and differ-

ent transfer thresholds T for this application based

on 24036 calls.

With an increasing threshold, callers are kept long-

er in the application and thus potentially expe-

rience more setbacks. This in turn results in an

increase of the average CEM score at call-end. At

the same time the failure rate decreases with an

increasing threshold since a higher threshold

means calls are likely to be transferred out.

It can be seen that starting around a threshold of 4

and above, the decrease in failure calls as well as

the increase in CEM levels off and thus a threshold

of 4.9 would be a good trade-off value between

automation and caller satisfaction (and this is the

value that the system currently is using). Note that

in this example, the parameters for the CEM calcu-

lation were based on the 6 equations from section

4.2.

Figure 3: Impact of CEM threshold on caller satisfaction and

success based on a live system for a cable company

0.4

0.9

1.4

1.9

20.0%

40.0%

60.0%

1 1.6 2.2 2.8 3.4 4 4.6 5.2 5.8

av
g.

 C
EM

%
Fa

ilu
re

Threshold

%Failure Avg. CEM

164

4.2 Results for System 2

This section shows results for using the CEM as a

dialog management tool, but this time instead of

transferring when the CEM(i) score reaches the

threshold, the application will instead change the

modality from speech to touch-tone. That is, in this

case the CEM is being used as a metric to gauge

the caller experience throughout the call and if the

experience is getting bad, the application would

switch to touchtone. Using touchtone as a modality

makes the interaction more elongated and tedious

for a caller, but will at the same time minimize the

amount of recognition errors and thus reduce caller

frustration.

This is particularly helpful in the case when either

a caller has a heavy accent or there is a lot of back-

ground noise or side-speech. This approach was

chosen, because this system that provides movie

show times and ticketing information did not have

the option of transferring problem calls to a call

center.

Application

Configuration

%Calls

ending in

Max Error

avg. # Er-

ror/Call

avg

CEM

Baseline (no

CEM)
3% 2.7 0.90

using CEM to

switch to

touchtone

1% 1.6 0.94

Table 4: Impact of using CEM to switch modality on

the overall system performance

Table 4 shows the impact of using the CEM score

to switch to touchtone. The data is based on re-

porting statistics for a live system and based on a

sample set of over 100,000 calls. The system per-

formance is shown in terms of average number of

errors as well as in the % of calls that ended due

hitting the max error criterion.

Row 1 shows the baseline performance of the sys-

tem configured with the standard rule of transfer-

ring after three errors. Note that in this case the

average CEM score was simulated afterwards from

log files.

The second row of Table 4 shows the performance

after the implementation of CEM. Using CEM to

switch modality if a given threshold was reached,

resulted in a 40% decrease in the average number

of errors. Overall, the percentage of calls that

ended in a max error scenario was reduced by

66%. However, these improvements came at the

cost of a slight decrease in the caller experience

(since the callers are essentially kept longer in the

system). This impact on the caller experience can

be seen from the increase in the average CEM

score at call-end.

4.3 Results for System 3

The third system that has the CEM implemented is

an application to start,stop or move one‘s energy

service at a home. Just like the previous two sys-

tems, this application was coded in a way that al-

lowed changing the event weight values at

runtime.

For this application, high automation rates are most

important. Therefore, when after an initial release,

the automation statistics weren‘t as high as ex-

pected, some of the event weight values were ad-

justed to essentially keep callers longer in the

system. Table 5 shows the fairly large impact of

changing the weight values for this commercial

application. Again, this data was derived from the

reporting statistics of a live system and is based on

over 10,000 calls for each system version (before

and after).

Applica-

tion Type

Success

rate of

Initial

Release

Success Rate

after CEM

Parameter

 adjustment

Relative

Improve-

ment

Stop 57.40% 63.87% 11.27%

Start 5.70% 8.23% 44.39%

Transfer 10.10% 13.39% 32.57%
Table 5: Impact of event weight values changes on overall

automation rates

5 Conclusions

This paper presents a metric to measure the caller

experience up to the current moment in time during

a call. A method to estimate the necessary parame-

ter weights so that the system will behave accord-

ing to a set of pre-defined rules was also presented.

 One of the advantages of this metric is that by

pre-defining the rules at system development time,

it is possible to account for client business rules as

to how a system should behave. Moreover, if the

system is programmed so that the weight parame-

ters and threshold are configurable at run-time, the

systems behavior can easily be changed imme-

165

diately. For example, if a call center is experienc-

ing high wait times, one can increase the threshold,

thus keeping more callers in automation and thus

have less traffic to the call center at the cost of a

less good experience for some callers.

It was shown that the score of this automated me-

tric at call end correlates well with human rating.

Thus this metric can be used for two reporting pur-

poses: First, to automatically flag problem calls.

Secondly, the average of this metric at call end can

be used to directly measure caller experience over

time.

 Moreover, using this metric as a decision crite-

rion for dialog management has been shown to

improve the automation in a live system.

 Future work will focus on expanding the set of

features contributing to the metric and on expand-

ing the range of actions the dialog manager might

take when the threshold is being reached.

6 References

Jacob Cohen, ―A coefficient of agreement for nominal

scores,‖ Educational and Psycological Measurement,

vol. 20, no. 1, pp. 37-46, 1960.

K. Evanini, P. Hunter, J. Liscombe, D. Suendermann,

K. Dayanidhi, R. Pieraccini. 2008. Caller Experience:

A method for evaluating dialog systems and its au-

tomatic prediction. Proc IEEE Workshop on Spoken

Language Technology (SLT), Columbus, Ohio,

USA..

E. Levin, R. Pieraccini. 2006. Value-based optimal de-

cision for dialog systems. Proc IEEE Workshop on

Spoken Language Technology (SLT), Aruba.

T. Paek, 2001, Empirical Methods for Evaluating Di-

alog Systems, Proceedings of the workshop on Eval-

uation for Language and Dialogue Systems.

T. Paek and E. Horvitz. 2004, Optimizing Automated

Call Routing by Integrating Spoken Dialog Models

with Queuing Models. Proc. Of HLT-NAAC 2004,

pp. 41 – 48.

I. Langkilde, M. Walker, J. Wright, A. Gorin and D.

Litman, Automatic Prediction of Problematic Hu-

man-Computer Dialogues in How May I Help you?,

Proc. Of ASRU 1999.

M. A. Walker, I. Langkilde-Geary, H.W. Hastie, J.

Wright, A. Gorin, Automatically Training A Probe-

matic Dialogue Predictor for a Spoken Dialog Sys-

tem, Journal of Artificial Intelligence Research, Vol.

16 (2002), p 293-319, 2002.

M.A. Walker, I. Langkilde, J. Wright, A. Gorin, D. Lit-

man, Learning to Predict Problematic Situations in a

Spoken Dialogue System: Experiments with How

May I Help You?, NA Meeting of ACL, 2000.

166

