
The TTR perceptron:
Dynamic perceptual meanings and semantic coordination

Staffan Larsson
University of Gothenburg

Sweden
sl@ling.gu.se

Abstract

In this paper, a dynamic semantic approach
to subsymbolic perceptual aspects of meaning
is presented. We show how a simple classi-
fier of spatial information based on the Per-
ceptron can be cast in TTR (Type Theory with
Records). Furthermore, we show how sub-
symbolic aspects of meaning can be updated
as a result of observing language use in inter-
action, thereby enabling fine-grained semantic
plasticity and semantic coordination.

1 Introduction

In dynamic semantics, meanings are context-update
functions which take an input context and return
an updated (output) context. In this paper, a dy-
namic semantic approach to subsymbolic percep-
tual aspects of meaning is presented. We show how
a simple classifier of spatial information based on
the Perceptron can be cast in TTR (Type Theory
with Records). A large variety of linguistic phe-
nomena related to logical/symbolic meaning have al-
ready been addressed within this framework. Conse-
quently, the TTR perceptron indicates that TTR may
be a useful framework for integrating subsymbolic
aspects of meaning in a way which allows us to keep
around the accumulated insights from formal seman-
tics.

Furthermore, we show how subsymbolic aspects
of meaning can be updated as a result of observing
language use in interaction, thereby enabling fine-
grained semantic plasticity and semantic coordina-
tion. This is done by modeling a simple language

game between agents with a shared focus of atten-
tion, similar to the “guessing game” of Steels and
Belpaeme (2005).

The main contribution of this paper is thus to show
how semantic coordination in dialogue concerning
subsymbolic and perceptual aspects of meaning can
be incorporated with traditional formal semantics.

We will first introduce the notion of semantic co-
ordination. Then, we briefly introduce the TTR
framework. In the following section, we show how
perceptrons can be represented in TTR and how this
can be used for incorporating subsymbolic semantics
into a dynamic semantic / information state update
framework.

2 Semantic coordination

Two agents do not need to share exactly the same lin-
guistic resources (grammar, lexicon etc.) in order to
be able to communicate, and an agent’s linguistic re-
sources can change during the course of a dialogue
when she is confronted with a (for her) innovative
use. For example, research on alignment shows that
agents negotiate domain-specific microlanguages for
the purposes of discussing the particular domain at
hand (Clark and Wilkes-Gibbs, 1986; Garrod and
Anderson, 1987; Pickering and Garrod, 2004; Bren-
nan and Clark, 1996; Healey, 1997; Larsson, 2007).
We use the term semantic coordination to refer to the
process of interactively coordinating the meanings of
linguistic expressions.

Several mechanisms are available for semantic
coordination in dialogue. These include corrective
feedback, where one DP implicitly corrects the way
an expression is used by another DP (Father’s first

SemDial 2011: Proceedings of the 15th Workshop on the Semantics and Pragmatics of Dialogue, pages 140–148.
Los Angeles, California, 21–23 September 2011.

140



utterance in the dialogue below, taken from Clark
(2007)), as well as explicit definitions of meanings
(Father’s second utterance).

“Gloves” example:

• Naomi: mittens

• Father: gloves.

• Naomi: gloves.

• Father: when they have fingers in them they are
called gloves and when the fingers are all put
together they are called mittens.

It also possible to coordinate silently, by DPs ob-
serving the language use of others and adapting to it.
Here’s a modified version of the “gloves” example
which we will use to illustrate this:

Modified “Gloves” example:

• (Naomi is putting on her new gloves)

• Father: Those are nice gloves!

In Larsson (2010) we sketch a formal account of
learning meanings from observation and accommo-
dation in dialogue. The examples we present are
from first language acquisition, where the child de-
tects innovative (for her) uses and adapts her take
on the meaning accordingly. We regard semantic
coordination in first language acquisition as a spe-
cial case of semantic coordination in general, where
there is a clear asymmetry between the agents in-
volved with respect to expertise in the language be-
ing acquired when a child and an adult interact.
However, we believe that the mechanisms for seman-
tic coordination used in these situations are similar to
those which are used when competent adult language
users coordinate their language.

3 The left-or-right game

As an illustration, we will be using a simple lan-
guage game whose objective is to negotiate the
meanings of the words “left” and “right”. A and B
are facing a framed surface on a wall, and A has a
bag of objects which can be attached to the framed
surface. The following procedure is repeated:

1. A places an object in the frame

2. B orients to the new object, assigns it a unique
individual marker and orients to it as the current
object in shared focus of attention

3. A says either ”left” or ”right”

4. B interprets A’s utterance based on B’s take on
the situation. Interpretation involves determin-
ing whether B’s understanding of A’s utterance
is consistent with B’s take on the situation.

5. If an inconsistency results from interpretation,
B assumes A is right, says “aha”, and learns
from this exchange; otherwise, B says “okay”

Note that the resulting meanings of “left” and
“right” will depend on how A places the objects
in the frame and what A says when doing so; this
may or may not correspond to the standard everyday
meanings of “left” and “right”. However, to keep
things intuituve we will assume that A’s takes on the
meanings of these words can be paraphrased as “to
the left of the center of the frame” and “to the right
of the center of the frame”, respectively.

The left-or-right game can be regarded as a
considerably pared-down version of the “guessing
game” in Steels and Belpaeme (2005), where per-
ceptually grounded colour terms are learnt from in-
teraction.

The kinds of meanings learnt in the left-or-right
game may be considered trivial. However, at the
moment we are mainly interested in the basic prin-
ciples of combining formal dynamic semantics with
learning of perceptual meaning from dialogue, and
the hope is that these can be formulated in a general
way which can later be used in more interesting set-
tings.

The remainder of this paper will be spent formu-
lating this simple game in TTR. To this end, we give
a brief introduction to this framework.

4 TTR

We will take an information state update approach
to utterance interpretation, using Type Theory with
Records (TTR) to model contexts and meaning func-
tions.

We can here only give a brief introduction to TTR;
see also Cooper (2005) and Cooper (fthc). The ad-
vantage of TTR is that it integrates logical tech-
niques such as binding and the lambda-calculus into

141



feature-structure like objects called record types.
Thus we get more structure than in a traditional for-
mal semantics and more logic than is available in
traditional unification-based systems. The feature
structure like properties are important for developing
similarity metrics on meanings and for the straight-
forward definition of meaning modifications involv-
ing refinement and generalization. The logical as-
pects are important for relating our semantics to the
model and proof theoretic tradition associated with
compositional semantics.

We will now briefly introduce the TTR formalism.
If a1 : T1, a2 : T2(a1), . . . , an : Tn(a1, a2, . . . , an−1),
the record to the left is of the record type to the right:


l1 = a1
l2 = a2
. . .
ln = an

. . .


:



l1 : T1
l2 : T2(l1)
. . .
ln : Tn(l1, l2, . . . , ln−1)



Types constructed with predicates may also be de-
pendent. This is represented by the fact that argu-
ments to the predicate may be represented by labels
used on the left of the ‘:’ elsewhere in the record
type.

Some of our types will contain manifest fields
(Coquand et al., 2004) like the a-field in the follow-
ing type:

[
a=obj123 : Ind
b : Ind

]

[
ref=obj123:Ind

]
is a convenient notation for[

ref : Indobj123
]

where Indobj123 is a singleton type.
If a : T , then Ta is a singleton type and b : Ta (i.e.
b is of type Ta) iff b = a. Manifest fields allow us
to progressively specify what values are required for
the fields in a type.

An important notion in this kind of type theory
is that of subtype. Formally, T1 v T2 means that
T1 is a subtype of T2. Two examples will suffice as
explanation of this notion:
[

ref : Ind
c : glove(ref)

]
v

[
ref : Ind

]

[
ref=obj123 : Ind

]
v

[
ref : Ind

]

Below, we will also have use for an operator for
combining record types. The ∧. operator works as

follows. Suppose that we have two record types C1
and C2:

C1 =

[
x : Ind
cclothing : clothing(x)

]

C2 =

[
x : Ind
cphysobj : physobj(x)

]

In this case, C1∧C2 is a type. In general if T1 and
T2 are types then T1 ∧ T2 is a type and a : T1 ∧ T2
iff a : T1 and a : T2. A meet type T1 ∧ T2 of two
record types can be simplified to a new record type
by a process similar to unification in feature-based
systems. We will represent the simplified type by
putting a dot under the symbol ∧. Thus if T1 and
T2 are record types then there will be a type T1∧. T2
equivalent to T1 ∧ T2 (in the sense that a will be
of the first type if and only if it is of the second type).

C1∧. C2 =


x : Ind
cphysobj : physobj(x)
cclothing : clothing(x)



The operation ∧. , referred to as merge below, cor-
responds to unification in feature-based systems and
its definition (which we omit here) is similar to the
graph unification algorithm.

5 Dynamic subsymbolic semantics

In this section, we will show how a TTR-based dy-
namic semantic account of meaning can be extended
to incorporate subsymbolic aspects of meaning. Ex-
amples will be based on the left-or-right game intro-
duced above.

5.1 Perceptual meanings as classifiers

Since all aspects of meaning can be modified as a
result of language use in dialogue, we want our ac-
count of semantic coordination and semantic plas-
ticity to include several aspects of lexical meaning.
We take the lexical meaning [e] of an expression
e to contain not only compositional semantics but
also perceptual meaning. By this we mean that as-
pect of the meaning of an expression which allows
an agent to detect objects or situations referred to
by the expression e. For example, knowing the per-
ceptual meaning of “panda” allows an agent to cor-
rectly classify pandas in her environment as pandas.

142



Likewise, an agent which is able to compute the per-
ceptual meaning of “a boy hugs a dog” will be able
to correctly classify situations where a boy hugs a
dog. We can therefore think of perceptual meanings
as classifiers of sensory input.

5.2 The TTR perceptron

Classification of perceptual input can be regarded as
a mapping of sensor readings to types To represent
perceptual classifiers, we will be using a simple per-
ceptron. A perceptron is a very simple neuron-like
object with several inputs and one output. Each input
is multiplied by a weight and if the summed inputs
exceed a threshold, the perceptron yields as output,
otherwise 0 (or in some versions -1).

o(x) =

{ 1 if w · x > t
0 otherwise

where w ·x =
∑n

i=1 wixi = w1x1 +w2x2 + . . .+wnxn

Perceptrons are limited to learning problems
which are linearly separable; the distinction between
left and right is one such problem. Perceptrons can
be interconnected by connecting the output of one or
several perceptrons to the inputs of a different per-
ceptron. Also, perceptrons can also be used to model
reasoning. Here, we want to use a single perceptron
to model perception.

In TTR, an n-dimensional real-valued vector will
be represented as a record with labels 1, . . ., n where
the value of each label will be a real number. Such a
records will be of the type RealVectorn.

RealVectorn =



1 : Real
2 : Real
. . .
n : Real



x =


1 = 0.23
2 = 0.34
3 = 0.45

 : RealVector3

For convenience, we will abbreviate this as in this
example:

x =
[
0.23 0.34 0.45

]
: RealVector3

xn = x.n, so x2=0.34

5.3 The TTR perceptron as a classifier

The basic perceptron returns a real-valued number
(1.0 or 0.0) but when we use a perceptron as a clas-
sifier we want it to instead return a type. Typically,
such types will be built from a predicate and some
number of arguments; for the moment we can think
of this type as a “proposition”.

A TTR classifier perceptron for a type P can be
represented as a record:


w =
[
0.800 0.010

]

t = 0.090
fun = λv : RealVector

(
{ P if v · w > t
¬P otherwise

)



Where p.fun will evaluate to

λv : RealVector

(
{ P if v ·

[
0.100 0.200

]
> 0.090

¬ P otherwise
)

5.4 Situations and sensors

In first language acquisition, training of perceptual
classifiers typically takes place in situations where
the referent is in the shared focus of attention and
thus perceivable to the dialogue participants, and for
the time being we limit our analysis to such cases.
For our current purposes, we assume that our DPs
are able to establish a shared focus of attention, and
we will designate the label foc-obj for the object or
objects taken by a DP to be in shared focus.

A (simple) sensor collects some information (sen-
sor input) from the environment and emits a real-
valued vector. The sensor is assumed to be oriented
towards the object in shared focus.

An agent’s (possibly underspecified) take on a sit-
uation is a part of the agent’s information state. It
is represented as a record type, possibly containing
manifest fields.

Furthermore, we will assume that sensors are di-
rected towards the focused object.

In the left-or-right game, we will assume that B’s
take on the situation includes readings from a posi-
tion sensor (denoted “srpos”) and a field foc-obj for
an object in shared focus of attention. The position
sensor returns a two-dimensional real-valued vector
representing the horizontal vertical coordinates of

143



the focused object:
[
x y

]
where −1.0 ≤ x, y ≤ 1.0

and
[
0.0 0.0

]
represents the center of the frame.

Here is an example of B’s take on the situation
prior to playing a round of the left-or-right game:

sB
1 =



srpos=
[
0.900 0.100

]
: RealVector

foc-obj=obj45 : Ind
spkr=A : Ind



In sb
1, B’s sensor is oriented towards obj45 and

srpos returns a vector corresponding to the position
of obj45.

5.5 Sensors readings as proofs
A fundamental type-theoretical intuition is that
something of type P(a) is whatever it is that counts
as a proof that P holds of a. One way of putting this
is that “propositions are types of proofs”. One can
have different ideas of what kind of objects count as
proofs. Here we will be assuming that proof-objects
can be takes on situations involving readings from
sensors; we can call such a proof a verification.

5.6 Static and dynamic semantics
We will take parts of the meaning of an uttered ex-
pression to be foregrounded, and other parts to be
backgrounded. Background meaning (bg) represents
constraints on the context, whereas foreground mate-
rial (fg) is the information to be added to the context
by the utterance in question. Both background and
foreground meaning components are represented in
TTR as types:

bg = T1
fg = T2

Static meanings (Kaplans “character”) are func-
tions from records (representing situations) to record
types (representing Kaplan’s “content”).

λx : T1(T2)

In TTR, contexts are represented as records,
whereas an agent’s takes on a context is represented
as a record type (typically involving manifest fields).
This allows takes on contexts to be underspecified,
which is useful in modeling agents with incomplete
knowledge. In TTR dynamic semantics, we there-
fore need a different kind of function, namely one
which takes an agents take on the context as input
and returns an updated take on the context. In TTR

terms, this means we need a function from record
types to record types.

λx v T1(x∧. T2)

When representing the meaning of an expression e
in lexicon, we can use a record collecting the various
aspects of [e], the meaning of e:

[e] =



bg = T1
fg = T2
sfun = λx : bg(fg[bg/x])
dfun = λx v bg(x∧. fg[bg/x])



where e1[e2/e3] is e1 with any occurrences of e2 re-
placed by e3.

The context update function (dfun, where d is
for “dynamic” as in “dynamic semantics”) takes as
argument a record type x (representing the agent’s
take on a situation) which is a subtype of the back-
ground meaning of the uttered expression, and re-
turns a record type corresponding to the merge of x
and the foreground meaning. Dynamic contextual
interpretation amounts to applying this function to
the input context, and the result of function applica-
tion is the output context1.

As it happens, there are several things which may
go wrong in interpreting an utterance. Given our for-
mulation of the context update function correspond-
ing to meanings, we can describe three cases of mis-
match between context c and the meaning of an ex-
pression e:

1. Type mismatch: The input context is not a sub-
type of the background meaning: c @[e].bg

2. Background inconsistency: The input con-
text is inconsistent with background meaning:
[e].bg∧. c ≈ ⊥

3. Foreground inconsistency: The output context
is inconsistent2: [e]@(c) ≈ ⊥

In the following, we will focus on foreground in-
consistency, leaving the other cases for future work.

5.7 The meaning of “right”
We can now say what a meaning in B’s lexicon might
look like before a round of the left-or-right game.
We assume that B has meanings only for “left” and

1Note that we will be using “context” and “situation” inter-
changeably.

2We use @ to denote function application.

144



[right]B =

w =
[
0.800 0.010

]

t = 0.090

bg =


srpos : RealVector
foc-obj : Ind
spkr : Ind



fg =



cperc
right =

[
srpos = bg.srpos

foc-obj = bg.foc-obj

]
:
{ right(bg.foc-obj) if bg.srpos·w > bg.srpos·t
¬right(bg.foc-obj) otherwise

ctell
right=


str = “right”
spkr = bg.spkr
foc-obj = bg.foc-obj

 : right(bg.foc-obj)


sfun = λx : bg(fg[bg/x])
dfun = λx v bg(x∧. fg[bg/x])



Figure 1: B’s initial lexical entry for ”right”

“right”.In our representations of meanings, we will
combine the TTR representations of meanings with
the TTR representation of classifier perceptrons.

Agent B’s initial take on the meaning of “right” is
represented by the record in Figure 1. The fields w
and t specify weights and a threshold for a classifier
perceptron which is used to classify sensor readings.

The bg field represents constraints on the input
context, which requires that there is a colour sensor
reading and a focused object foc-obj. The fg field
specifies two fields.

The value of cperc
right is a proof of either or right(foc-

obj) or ¬right(foc-obj), depending on the output of
the classifier perceptron which makes use of w and t.
Here, right(y) is a perceptual “proposition” (a type
constructed from a predicate), and objects of this
type are proofs that y is (to the) right. As a proof
of right(foc-obj) we count a “snapshot” of relevant
parts of the situation, consisting of the current sensor
reading and a specification of the currently focused
object.

The value of ctell
right is a record containing informa-

tion about an utterance, namely that a speaker just
uttered the word “right”. We assume that this counts
as a proof that foo is (to the) right. This implements
an assumption that A is always right, an assumption
that one could choose to remove in a more compli-
cated version of the left-or-right game.

6 Contextual interpretation

We will first show a case where interpretation runs
smoothly. Player A picks up an object and places it
in the frame, and B finds the object and assigns it the
individual marker obj45, directs the position sensor
to it and gets a reading. Player A now says “right”,
after which B’s take on the situation is sB

1 , repeated
here for convenience:

sB
1 =



srpos=
[
0.900 0.100

]
: RealVector

foc-obj=obj45 : Ind
spkr=A : Ind



To interpret A’s utterance, B applies [right]B.dfun
to sB

1 to yield a new take on the situation sB
2 :

sB
2 =[right]B.dfun@sB

1 =



srpos=
[
0.900 0.100

]
:RealVector

foc-obj=obj45:Ind
spkr=A:Ind

cperc
right =


sensorcol =

[
0.900 0.100

]

foc-obj = obj45

 :right(obj45)

ctell
right=


str = “right”
spkr = A
foc-obj = obj45

 :right(obj45)



Here, the classifier takes sB
1 to contain a proof of

right(obj45).

145



7 Learning perceptual meaning from
interaction

7.1 Detecting foreground inconsistency

We now assume that in the next round, A places an-
other object in a different position in the frame and
again says “right”. Now, B’s take on the situation is
as follows:

sB
3 =


srpos=
[
0.100 0.200

]
:RealVector

foc-obj=obj45:Ind
spkr=A:Ind

cperc
right =

[
sensorcol =

[
0.900 0.100

]

foc-obj = obj46

]
:right(obj45)

ctell
right=


str = “right”
spkr = A
foc-obj = obj45

 :right(obj45)



Note that foc-obj has been updated and that there
is a new sensor reading3. As before, B interprets A’s
utterance to yield a new take on the situation4:

sB
4 = [right]B.dyn@sB

3 =

srpos=
[
0.100 0.200

]
:RealVector

foc-obj=obj45:Ind
spkr=A:Ind

cperc
right =

[
sensorcol =

[
0.900 0.100

]

foc-obj = obj45

]
:right(obj45)

ctell
right=


str = “right”
spkr = A
foc-obj = obj45

 :right(obj45)

c1perc
right =

[
sensorcol =

[
0.100 0.200

]

foc-obj = obj46

]
:¬ right(obj46)

c1tell
right=


str = “right”
spkr = A
foc-obj = obj46

 :right(obj46)



This time, however, applying the classifier per-
ceptron to the sensor input yields ¬right(obj46) and
hence the classifier takes sB

3 to contain a proof both
of right(obj46) (labelled c1perc

right) and of ¬right(obj46)
(labelled c1tell

right). This is a case of foreground incon-
sistency – the record type sB

4 is inconsistent (sB
4 ≈ ⊥).

3We are assuming that takes on situations can be updated
not only by applying dynamic meanings to them, but also by
applying non-monotonic updates, as in the Information State
Update approach to dialogue management (Traum and Larsson,
2003). Specifically, we assume the values of srpos, foc-obj and
spkr have been updated in this way.

4We are assuming a mechanism for relabeling fields if labels
conflict, by attaching an integer to the label, starting with 1.

That is, there can be no situation (record) of this
type.

According to the rules of the game, B resolves this
conflict by trusting A’s judgement over B’s own clas-
sification. Hence, B must remove c1perc

right. Further-
more, B can learn from this exchange by updating
the weights used by the classifier perceptron associ-
ated with [right].

7.2 Updating perceptual meaning

Perceptrons are updated using the perceptron train-
ing rule:

wi ← wi + ∆wi

where

∆wi = η(ot − o)xi

where ot is the target output, o is the actual output,
and wi is associated with input xi. Note that if ot = o,
there is no learning. However, since B only tries to
learn from mistakes (and not from successes), we
have already established that ot − o is 1.0 for a per-
ceptron outputting real numbers. (In any case, our
classifier perceptron instead outputs types, so it is
not very useful for computing this difference.)

We can now formulate the perceptron training rule
as updating a TTR record5 :

ptrain(m, s, C) = m but with
m.w← m.w+ηn·s.srC

m.t← m.t−η
where

• m is a meaning (e.g. [right])

• s is a record type representing a take on a situa-
tion

• C is a sensor name, e.g. pos, corresponding to
a perceptual category (e.g. position)

• m.w:RealVectorn, m.t:Real

• ηn is an n-dimensional real-valued vector where
ηn

m = η for all m, 1 ≤ m ≤ n, e.g. η2 =
[
η η

]

• s.srC is a sensor reading in s
5We here train the threshold t separately; an alternative is to

include it as w0 and assume a dummy input x0 = 1. In the latter
case, t is updated as a part of updating w.

146



In the example above, for η = 0.1 we get

[right]B’ = ptrain([right]B, sB
4 , pos) = [right]B but

with [right]B.w←[
0.800 0.010

]
+

[
0.1 0.1

]
·
[
0.100 0.200

]
and

m.t← 0.090 − 0, 1

which yields

[right]B’.w =
[
0.808 0.2002

]
.

[right]B’.t = −0.010.

B has thus updated the meaning of “right” by
modifying the weight vector used by a classifier per-
ceptron, based on the output of applying the dynamic
semantics of “right” to B’s take on the situation.

8 Conclusion and future work

The work presented here is part of a research agenda
aiming towards a formal account of semantic coordi-
nation in dialogue. In this paper, we have presented
a dynamic semantic approach to subsymbolic per-
ceptual aspects of meaning. We have shown how a
simple classifier of spatial information based on the
Perceptron can be cast in TTR (Type Theory with
Records). Furthermore, we have shown how sub-
symbolic aspects of meaning can be updated as a re-
sult of observing language use in interaction, thereby
enabling fine-grained semantic plasticity and seman-
tic coordination.

There are many possible variants of the left-or-
right game, which will be explored in future re-
search. An obvious extension is to add more words
(e.g. “upper” and “lower”) and some simple gram-
mar (“upper left”, “lower right” etc) to explore com-
positionality of perceptual meanings. The left-or-
right game can be extended by adding more inter-
esting interaction patterns, including corrective feed-
back and explicit definitions. The capabilities of the
agents could be extended by e.g. pointing. Addi-
tional sensors and classifiers, e.g. for colour, shape
and relative position, can be added. The fact that sit-
uations are stored as proofs can be useful in interac-
tions where agent B rejects an utterance of by A and
cites a previous situation when arguing for this re-
jection (’If this one here [pointing at object] was on
the right, how can this one [pointing at other object]
be on the left?’). We also want to explore how cases
of type mismatch and background inconsistency can

play out in (some more sophisticated version of) the
left-or-right game.

Acknowledgments

This research was supported by The Swedish Bank
Tercentenary Foundation Project P2007/0717, Se-
mantic Coordination in Dialogue. Thanks to Robin
Cooper and Simon Dobnik for extremely useful
comments on an early draft.

References

Brennan, S. E. and H. H. Clark (1996). Conceptual
pacts and lexical choice in conversation. Journal
of Experimental Psychology: Learning, Memory
and Cognition 22, 482–493.

Clark, E. V. (2007). Young children’s uptake of new
words in conversation. Language in Society 36,
157–82.

Clark, H. H. and D. Wilkes-Gibbs (1986). Refering
as a collaborative process. Cognition 22, 1–39.

Cooper, R. (2005). Austinian truth, attitudes and
type theory. Research on Language and Compu-
tation 3, 333–362.

Cooper, R. (fthc). Type theory and semantics in flux.

Coquand, T., R. Pollack, and M. Takeyama (2004).
A logical framework with dependently typed
records. Fundamenta Informaticae XX, 1–22.

Garrod, S. C. and A. Anderson (1987). Saying what
you mean in dialogue: a study in conceptual and
semantic co-ordination. Cognition 27, 181–218.

Healey, P. (1997). Expertise or expertese?: The
emergence of task-oriented sub-languages. In
M. Shafto and P. Langley (Eds.), Proceedings of
the 19th Annual Conference of the Cognitive Sci-
ence Society, pp. 301–306.

Larsson, S. (2007). Coordinating on ad-hoc seman-
tic systems in dialogue. In Proceedings of the 10th
workshop on the semantics and pragmatics of di-
alogue.

Larsson, S. (2010). Accommodating innovative
meaning in dialogue. In P. Łupkowski and
M. Purver (Eds.), Aspects of Semantics and Prag-
matics of Dialogue. SemDial 2010, 14th Work-
shop on the Semantics and Pragmatics of Dia-

147



logue, pp. 83–90. Poznań: Polish Society for Cog-
nitive Science.

Pickering, M. J. and S. Garrod (2004, April). Toward
a mechanistic psychology of dialogue. Behavioral
and Brain Sciences 27(02), 169–226.

Steels, L. and T. Belpaeme (2005, August). Coordi-
nating perceptually grounded categories through
language: A case study for colour. Behavioral and
Brain Sciences 28(4), 469–89. Target Paper, dis-
cussion 489-529.

Traum, D. and S. Larsson (2003). The informa-
tion state approach to dialogue management. In
R. Smith and J. Kuppevelt (Eds.), Current and
New Directions in Discourse & Dialogue. Kluwer
Academic Publishers.

148




