
Proceedings of the 12th Workshop on the Semantics and Pragmatics of Dialogue, June 2–4, 2008, London, U.K.

A Grammar Formalism for Specifying
ISU-based Dialogue Systems

Peter Ljunglöf, Department of Linguistics, University of Gothenburg

We describe how to give a full specification of an
ISU-based dialogue system as a grammar. For this
we use Grammatical Framework (GF), which sep-
arates grammars into abstract and concrete syntax.
All components necessary for a complete GoDiS di-
alogue system are specified in the abstract syntax,
while the linguistic details are defined in the con-
crete syntax. Since GF is a multilingual grammar
formalism, it is straightforward to extend the dia-
logue system to several languages.

The information-state update approach

The GoDiS dialogue manager [1] is based on for-
mal semantic and pragmatic theories of dialogue,
and provides general and fairly sophisticated ac-
counts of several common dialogue phenomena such
as interactive grounding (a.k.a. verification), accom-
modation, keeping track of multiple conversational
threads, and mixed initiative. General solutions to
general problems allow modularity, re-use and rapid
prototyping.

GoDiS is based on the Information State Update
(ISU) approach to dialogue management [4]. The
ISU approach, which has been developed over the
last 10 years in several EU-funded projects, provides
a generalization over previous theories of dialogue
management and allows exploring a middle ground
between sophisticated but brittle research systems,
and robust but simplistic commercial systems. In the
ISU approach, a dialogue manager is formalized as:
(i) an information state (IS) type declaration, (ii) a
set of dialogue moves, and (iii) information state up-
date rules.

In GoDiS, which is based on a theory of Issue-
Based Dialogue Management (IBDM), a single
script (called a dialogue plan) can be used flexibly
by the dialogue manager to allow for a wide range
of dialogues. The main benefit of the IBDM account
as implemented in GoDiS is the combination of ad-
vanced dialogue management and rapid prototyping
enabled by cleanly separating generic dialogue prin-
ciples from application-specific domain knowledge.

GoDiS enables rapid prototyping of systems with
advanced dialogue behavior. However, the GoDiS
dialogue manager only communicates with the out-

side world using semantic representations called di-
alogue moves. The designer of the dialogue system
must implement a translation between natural lan-
guage utterances and dialogue moves, be it through
a simple lookup table, or an advanced feature-based
grammar. Furthermore, a speech-based system also
needs a statistical language model or a speech recog-
nition grammar. In this paper we show how a GoDiS
dialogue system can be specified as a single gram-
mar in the Grammatical Framework. All compo-
nents necessary for a ISU-based dialogue system are
then automatically generated from the grammar.

The GoDiS dialogue manager

The GoDiS system communicates with the user via
dialogue moves. There are three main dialogue
moves – requesting actions, asking questions and
giving answers. Apart from the three main moves
there are also different kinds of feedback moves –
confirmations, failure reports and interactive com-
munications management.

The basic building blocks in GoDiS are individ-
uals, sorts, one-place predicates and actions. From
these all necessay dialogue moves can be built, such
as questions, answers, requests and feedback. To
specify a GoDiS dialogue system, we have to give
the following information: (i) the sortal hierarchy,
(ii) the individuals and the sorts they belong to, (iii)
the predicates and their domains, (iv) the actions,
and (v) the dialogue plans. Furthermore, there has
to be an interface to each external device.

Dialogue plans convey what the system can do
and/or give information about. A dialogue plan is
a receipt for the system, so it knows how to answer
a specific question, or how to perform a given ac-
tion. The dialogue plans can roughly be divided into
three different kinds – actions, issues and menus. An
action plan is when the user wants the system to per-
form an action, e.g., to call a contact in the address
book. An issue plan is when the user wants the sys-
tem to give information, such as telling the phone
number of a contact in the address book. A spe-
cial kind of action plan is the menu, where the user
can select from any of a given number of sub-plans
which the system then performs.

191



Proceedings of the 12th Workshop on the Semantics and Pragmatics of Dialogue, June 2–4, 2008, London, U.K.

Grammatical Framework

Grammatical Framework [2] is a grammar formal-
ism based on type theory. The main feature is the
separation of abstract and concrete syntax, which is
crucial for our treatment of dialogue systems. The
abstract syntax of a GF grammar consists of declara-
tions of categories and functions. Function declara-
tions correspond to rules in a context-free grammar.

The concrete syntax consists of linearizations of
the abstract functions. Linearizations are written in
a typed functional programming language, which is
very expressive but still decidable.

It is possible to define different concrete syn-
taxes for one particular abstract syntax, making GF a
multilingual grammar formalism. Furthermore, the
abstract syntax of one grammar can be used as a
concrete syntax of another grammar, which makes
it possible to implement grammar resources to be
used in several different application domains. These
points are currently exploited in the GF Resource
Grammar Library [3], which is a multilingual GF
grammar with a common abstract syntax for 13 lan-
guages, including Arabic, Finnish and Russian.

GoDiS specification as GF abstract syntax

Action and issue plans are specified as functions
with result categories Action(m) and Issue(m) re-
spectively, where m specifies which menu they be-
long to:

fun callContact : Name→ Action(MakeCall)

fun searchForNumber : Name→ Number→
Issue(ManageContacts)

The first specification states that callContact is an ac-
tion plan in the MakeCall menu. It takes one argu-
ment, which is the Name of the contact to call. The
second specification is the issue plan searchForNum-
ber. It also takes one Name argument, which the sys-
tem will ask for if not already said by the user. The
final Number argument represents the system’s an-
swer, and will be filled by the system when it knows
the answer.

Everything else in the GF grammar specifies the
ontology of the dialogue system. From the grammar
we can extract the sorts and the sortal hierarchy, the
individuals and the predicates.

Dialogue utterances as GF concrete syntax

The concrete syntax is responsible for translating ev-
erthing the user says into dialogue moves, and what
the system might want to say into natural language.
For each function in the abstract syntax, there has to

be a corresponding linearization. E.g., the callCon-
tact action might have the following linearization:

lin callContact(x) = “call” ++ variants{x ; “a contact”}

This linearization will be used in several places by
the dialogue system. First, we can use it in parsing
the user utterances “call anna” (or “call a contact”):
The result is the GF term callContact(anna) (or call-
Contact(?)), which will be automatically translated
into GoDiS dialogue moves. Second, the system will
use it when presenting the MakeCall menu: “do you
want to call a contact or call a number?” . Third,
the system will generate different kinds of feedback
moves containing the GF term: “so, you want to call
a contact” or “I’m sorry, I cannot call a contact at
this moment”.

A short example

Assume that the user says “I’d like to call a con-
tact please”. This is recognized by the system
as the dialogue move request(callContact), which
means that GoDiS loads the associated action plan.
In this plan it sees that it needs a value for
callContact:Name, so it utters the dialogue move
ask(?x.callContact:Name(x)). There is an extra lin-
earization for callContact for handling wh-questions
(not shown above), translating the dialogue move
into “Which name do you want to call?”. GoDiS in-
corporates the user answer as answer(Name(Kim)),
and then tells the phone to look up Kim’s number in
the phone book and call. A confirmation dialogue
move, confirm(callContact), is at the same time pre-
sented to the user.

References
[1] Staffan Larsson. Issue-based Dialogue Manage-

ment. PhD thesis, Department of Linguistics,
Gothenburg University, 2002.

[2] Aarne Ranta. Grammatical Framework, a
type-theoretical grammar formalism. Journal
of Functional Programming, 14(2):145–189,
2004.

[3] Aarne Ranta, Ali El-Dada, and Janna Khe-
gai. The GF Resource Grammar Library, 2006.
Can be downloaded from the GF homepage

[4] David Traum and Staffan Larsson. The informa-
tion state approach to dialogue management. In
Smith and Kuppevelt, editors, Current and New
Directions in Discourse and Dialogue, pages
325–353. Kluwer Academic Publishers, 2003.

192


