
A Chatbot-based Interactive Question Answering System

Silvia Quarteroni
The University of York

York, YO10 5DD
United Kingdom

silvia@cs.york.ac.uk

Suresh Manandhar
The University of York

York, YO10 5DD
United Kingdom

suresh@cs.york.ac.uk

Abstract
Interactive question answering (QA) sys-
tems, where a dialogue interface enables
followup and clarification questions, are
a recent field of research. We report our
experience on the design, implementation
and evaluation of a chatbot-based dialogue
interface for our open-domain QA system,
showing that chatbots can be effective in
supporting interactive QA.

1 Introduction

Question answering (QA) systems can be seen
as information retrieval systems which aim at re-
sponding to natural language queries by returning
answers rather than lists of documents.

Although QA differs from standard informa-
tion retrieval in the response format, both pro-
cesses share a lack of interactivity. In the typi-
cal information-seeking session the user submits a
query and the system returns a result; the session
is then concluded and forgotten by the system.

It has been argued (Hobbs, 2002) that provid-
ing a QA system with a dialogue interface would
encourage and accommodate the submission of
multiple related questions and handle the user’s
requests for clarification. Indeed, information-
seeking dialogue applications of QA are still at
an early stage and often relate to close domains
(Small et al., 2003; Jönsson and Merkel, 2003;
Kato et al., 2006).

In this paper, we report on the design, imple-
mentation and evaluation of the dialogue interface
for our open-domain QA system, YourQA (Quar-
teroni and Manandhar, 2006). The system is able
to provide both factoid and complex answers such
as definitions and descriptions. The dialogue in-
terface’s role is to enable an information seeking,

cooperative, inquiry-oriented conversation to sup-
port the question answering component.

Section 2 introduces the design of our inter-
active QA system; Section 3 describes an ex-
ploratory study conducted to confirm our design
assumptions. The implementation and evaluation
of our prototype are described in Sections 4 and 5.
Section 6 briefly concludes on our study.

2 System Design

Our open domain QA system, YourQA, takes the
top 20 Google results for a question, retrieves the
corresponding Web pages and analyzes them to
extract answers and rank them by relevance to the
question. A non-interactive interface exists for
the system where users enter a question in a text
field, and obtain a list of answers in the form of
an HTML result page (Quarteroni and Manandhar,
2006).

We now describe the dialogue scenario and
management model for the interactive version of
the system, where the core QA component is me-
diated by a dialogue interface.

2.1 Dialogue scenario

In the dialogue scenario we are modelling, a typi-
cal QA session consists of the following dialogue
moves:

1. An initial greeting (greet move), or a direct
question q from the user (ask(q) move);

2. q is analyzed to detect whether it is related to
previous questions;

(a) If q is unrelated to the preceding ques-
tions, it is submitted to the QA compo-
nent;

Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 83–90.
Trento, Italy, 30 May – 1 June 2007. Edited by Ron Artstein and Laure Vieu.

83



(b) If q is related to the preceding ques-
tions (i.e. q is a followup question),
and is elliptic, i.e. contains no verb (
“Why?”), the system uses the previous
questions to complete q with the missing
keywords and submits a revised ques-
tion q’ to the QA component;

(c) If q is a followup question and is
anaphoric, i.e. contains references to
entities in the previous questions, the
system tries to create a revised ques-
tion q” where such references are re-
placed by their corresponding entities,
then checks whether the user actually
means q” (move ground(q”)); if the
user agrees, query q” is issued to the
QA component. Otherwise, the system
asks the user to reformulate his/her ut-
terance (move sysReqClarif ) until find-
ing a question which can be submitted
to the QA component;

3. As soon as the QA component results are
available, an answer a is provided (answer(a)
move);

4. The system enquires whether the user is in-
terested in a followup session; if this is the
case, the user can enter a query (ask move)
again. Else, the system acknowledges (ack);

5. Whenever the user wants to terminate the in-
teraction, a final greeting is exchanged (quit
move).

At any time the user can issue a request for clar-
ification (usrReqClarif(r)) in case the system’s ut-
terance is not understood.

2.2 Dialogue Moves
The dialogue moves with which the interactive
QA scenario above is annotated are summarized
in Tables 1 and 2. Such moves are a gen-
eralization of the dialogue move sets proposed
for other information-oriented dialogue models
such as GoDiS (Larsson et al., 2000) and Midiki
(MITRE Corporation, 2004).

We now discuss the choice of a dialogue man-
agement model to implement such moves.

2.3 Choosing a dialogue manager
When designing information-seeking dialogue
managers, the simplest approaches appear to be

User move Description
greet conversation opening
quit conversation closing
ask(q) user asks question q
ack acknowledgement of previ-

ous utterance, e.g. “Thanks.”
usrReqClarif(r) clarification request (r = rea-

son)

Table 1: User dialogue moves

System move Description
greet conversation opening
quit conversation closing
answer(a) answer (a = answer)
ack acknowledgement of previous

utterance, e.g. “Ok.”
sysReqClarif clarification request
ground(q) grounding (q = question)
followup proposal to continue session

Table 2: System dialogue moves

finite-state (FS) models. Here, each phase of the
conversation is modelled as a separate state, and
each dialogue move encodes a transition to a sub-
sequent state (Sutton, 1998).

However, FS models allow very limited free-
dom in the range of user utterances. Since each
dialogue move must be pre-encoded in the models,
these are not scalable to open domain dialogue.

A more complex dialogue management model
is the Information State (IS) approach inspired by
Ginzburg’s dialogue gameboard theory (Ginzburg,
1996). The topics under discussion and common
ground in the conversation are part of the IS and
continually queried and updated by rules fired by
participants’ dialogue moves. The IS theory, intro-
duced in the TRINDI project (Larsson and Traum,
2000), has been applied to a range of closed-
domain dialogue systems (e.g. travel information,
route planning).

Although it provides a powerful formalism, the
IS infrastructure appears too voluminous for our
QA application. We believe that the IS approach
is primarily suited to applications requiring a plan-
ning component such as in closed-domain dia-
logue systems and to a lesser extent in our open-
domain dialogue system as we currently do not
make use of planning. Moreover, in our system

84



the context is only used for question clarification
purposes.

2.3.1 The chatbot approach
As a solution joining aspects of both FS and IS

approaches, we studied the feasibility of a conver-
sational agent based on an AIML interpreter.

AIML (Artificial Intelligence Markup Lan-
guage) was designed for the creation of conver-
sational robots (“chatbots”) such as ALICE1. It
is based on pattern matching, which consists in
matching the last user utterance against a range
of dialogue patterns known to the system (“cat-
egories”) in order to produce a coherent answer
following a range of “template” responses.

Designed for chatting, chatbot dialogue appears
more natural than in FS and IS systems. More-
over, since chatbots support a limited notion of
context, they seem to offer the means to support
followup recognition and other dialogue phenom-
ena not easily covered using standard FS models.

To assess the feasibility of chatbot-based QA di-
alogue, we conducted an exploratory Wizard-of-
Oz experiment, described in Section 3.

3 Wizard-of-Oz experiment

A Wizard-of-Oz (WOz) experiment is usually de-
ployed for natural language systems to obtain ini-
tial data when a full-fledged prototype is not yet
available (Dahlbaeck et al., 1993). The experi-
ment consists in “hiding” a human operator (the
“wizard”) behind a computer interface to simulate
conversation with the user, who believes to be in-
teracting with a fully automated prototype.

3.1 Assumptions

In addition to the general assumption that a chat-
bot would be sufficient to successfully conduct a
QA conversation, we intended to explore whether
a number of further assumptions were founded in
the course of our experiment.

First, users would use the system to obtain in-
formation, thus most of their utterances would be
questions or information requests.

Then, users would easily cope with the sys-
tem’s requests to rephrase their previous utter-
ances should the system fail to understand them.

Finally, the user’s clarification requests would
be few: as a matter of fact, our answer format
provides more information than explicitly required

1http://www.alicebot.org/

and this has been shown to be an effective way
to reduce the occurrence of clarification requests
(Kato et al., 2006; Hickl and Harabagiu, 2006).

3.2 Task Design
We designed six tasks, to be proposed in groups of
two to six or more subject so that each task was
performed by at least two different users. These
reflected the intended typical usage of the system
(e.g. “Find out who painted Guernica and ask the
system for more information about the artist”).

Users were invited to test the supposedly com-
pleted prototype by interacting with an instant
messaging platform, which they were told to be
the system interface.

Since our hypothesis was that a conversational
agent is sufficient to handle question answering, a
set of AIML categories was created to represent
the range of utterances and conversational situa-
tions handled by a chatbot.

The role of the wizard was to choose the appro-
priate category and utterance within the available
set, and type it into the chat interface to address the
user. If none of these appeared appropriate to han-
dle the situation at hand, the wizard would create
one to keep the conversation alive and preserve the
illusion of interacting with a machine. The wizard
asked if the user had any follow-up questions after
each answer (“Can I help you further?”).

3.3 User Feedback Collection
To collect user feedback, we used two sources:

• the chat logs, which provided information
about the situations that fell above the as-
sumed requirements of the chat bot interface,
the frequency of requests for repetition, etc.;

• a questionnaire submitted to the user imme-
diately after the WOz experiment, enquiring
about the user’s experience.

The questionnaire, inspired by the WOz experi-
ment in (Munteanu and Boldea, 2000) consists of
six questions:
Q1 Did you get all the information you wanted us-
ing the system?
Q2 Do you think the system understood what you
asked?
Q3 How easy was it to obtain the information you
wanted?
Q4 Was it difficult to reformulate your questions
when you were invited to?

85



Q5 Do you think you would use this system again?
Q6 Overall, are you satisfied with the system?

Questions Q1 and Q2 assess the performance
of the system and were ranked on a scale from 1=
“Not at all” to 5=“Yes, Absolutely”. Questions Q3

and Q4 focus on interaction difficulties, especially
relating to the system’s requests to reformulate the
user’s question. Questions Q5 and Q6 relate to the
overall satisfaction of the user. The questionnaire
also contained a text area for optional comments.

3.4 WOz experiment results

The WOz experiment was run over one week and
involved one wizard and seven users. These came
from different backgrounds and native languages,
were of different ages and were regular users of
search engines. All had used chat interfaces be-
fore and had an account on the platform used for
the experiment, however only one of them doubted
that they were confronted to a real system. The
average dialogue duration was 11 minutes, with a
maximum of 15 minutes (2 cases) and a minimum
of 5 minutes (1 case).

From the chat logs, we observed that as pre-
dicted all dialogues were information seeking.
One unexpected result was that users often asked
two things at the same time (e.g. “Who was Jane
Austen and when was she born?”). To account for
this case, we decided to handle double questions
in the final prototype, as described in Section 4.

The sysReqClarif dialogue move proved very
useful, and sentences such as “Can you please re-
formulate your question?” or “In other words,
what are you looking for?” were widely used.
Users seemed to enjoy “testing” the system and ac-
cepted the invitation to produce a followup ques-
tion (“Can I help you further?”) around 50% of
the time.

Our main observation from the user comments
was that users seemed to receive system grounding
and clarification requests well, e.g. “ . . . on refer-
ences to “him/it”, pretty natural clarifying ques-
tions were asked.”

The values obtained for the user satisfaction
questionnaire, reported in Table 3, show that users
tended to be particularly satisfied with the sys-
tem’s performances and none of them had diffi-
culties in reformulating their questions (Q4) when
this was requested (mean 3.8, standard deviation
.5, where 3 = “Neutral” and 4 = “Easy”). For the
remaining questions, satisfaction levels were high,

between 4±.8 (Q3) and 4.5±.5 (Q5).

Question judgment Question judgment
Q1 4.3±.5 Q2 4.0
Q3 4.0±.8 Q4 3.8±.5
Q5 4.1±.6 Q6 4.5±.5

Table 3: Wizard-of-Oz questionnaire results:
mean ± standard deviation

4 System Architecture

The dialogue manager and interface were imple-
mented based on the scenario in Section 2 and the
outcome of the WOz experiment.

4.1 Dialogue Manager

Chatbot dialogue follows a pattern-matching ap-
proach, and is therefore not constrained by a no-
tion of “state”. When a user utterance is issued, the
chatbot’s strategy is to look for a pattern matching
it and fire the corresponding template response.

Our main focus of attention in terms of dialogue
manager design was therefore directed to the di-
alogue moves invoking external modules such as
the followup recognition and QA component.

We started from the premise that it is vital in
handling QA dialogue to apply an effective al-
gorithm for the recognition of followup requests,
as underlined in (De Boni and Manandhar, 2005;
Yang et al., 2006). Hence, once a user utterance is
recognized as a question by the system, it attempts
to clarify it by testing whether it is a double ques-
tion or a followup question.

4.1.1 Handling double questions
For the detection of double questions, the sys-

tem uses the OpenNLP chunker2 to look for the
presence of “and” which does not occur within a
noun phrase. If it is found, the system simply of-
fers to answer one of the two “halves” of the dou-
ble question (the one containing more tokens) as
the QA component is not able to handle multiple
questions.

4.1.2 Handling followup questions
The types of followup questions which the sys-

tem is able to handle are elliptic questions, ques-
tions containing third person pronoun/possessive
adjective anaphora, or questions containing noun

2http://opennlp.sourceforge.net/

86



phrase (NP) anaphora (e.g. “the river” instead of
“the word’s longest river”).

Detection of followup questions For the detec-
tion of followup questions, the algorithm in (De
Boni and Manandhar, 2005) is used. This is based
on the following features: presence of pronouns,
absence of verbs, word repetitions and similarity
between the current and the n preceding questions.
The algorithm is reported below:
Followup_question (qi, qi..qi−n)
is true if

1. qi has pronoun and possessive
adjective references to qi..qi−n

2. qi contains no verbs

3. qi has repetition of common or
proper nouns in qi..qi−n

or
qi has a strong semantic
similarity to some qj ∈ qi..qi−n

Following the authors, we apply the above al-
gorithm using n = 8; at the moment the condition
on semantic distance is not included for the sake
of processing speed.

Resolution of followup questions If a question
q is identified as a followup question, it is submit-
ted to the QA component; otherwise the following
reference resolution strategy is applied:

1. if q is elliptic (i.e. contains no verbs), its key-
words are completed with the keywords ex-
tracted by the QA component from the previ-
ous question for which there exists an answer.
The completed query is submitted to the QA
component.

2. if q is anaphoric:

(a) in case of pronoun/adjective anaphora,
the chunker is used to find the first com-
patible antecedent in the previous ques-
tions in order of recency. The latter must
be a NP compatible in number with the
referent.

(b) in case of NP anaphora, the first NP
containing all of the referent words is
used to replace the referent in the query.

In both cases, when no antecedent can be
found, a clarification request is issued by the
system until a resolved query can be obtained
and submitted to the QA component.

Ellipsis and reference resolution is useful not
only for question interpretation but also to opti-
mize the retrieval phase: it suggests to extract an-
swers from the same documents collected to an-
swer the antecedent question (De Boni and Man-
andhar, 2005). Hence, if a clarified followup ques-
tion is submitted to the QA component, the QA
system extracts answers from the documents re-
trieved for the previous question.

When the QA process is terminated, a message
directing the user to the HTML answer page is re-
turned and the followup proposal is issued. We
must point out that such solution implies that the
clarification and followup abilities of YourQA are
limited to the questions. Indeed, it is not possible
to handle answer clarification at the moment: it
would be impossible for the system to conduct a
conversation such as:
Usern: Who was Shakespeare married to?
Systemn: Anne Hathaway.
Usern+1: what was her profession?

Data-driven answer clarification in the open do-
main is an open issue which we would like to study
in the future, in order to make the dialogue compo-
nent more tied into the structure of the QA system.

4.2 Implementation
Following the typical implementation of a pattern-
matching conversational agent, we designed a set
of patterns to cover the dialogue scenarios elab-
orated in the design stage and enriched with the
WOz experiment.

4.2.1 AIML interpreter and context
First, we grouped the AIML categories in dif-

ferent .aiml files, each corresponding to one of the
dialogue moves in Table 2.

We used the Java-based AIML interpreter Chat-
terbean3, which allows to define custom AIML
tags and allows a seamless integration between the
QA module and the chat interface.

We augmented the Chatterbean tag set with two
AIML tags:

• <query>, to invoke the YourQA question
answering module;

• <clarify>, to support the tasks of clarifi-
cation detection and reference resolution.

The Chatterbean implementation of the conver-
sation context (in a dedicated Context class) al-

3http://chatterbean.bitoflife.cjb.net/

87



lows to instantiate and update a set of variables,
represented as context properties. We defined sev-
eral of these, including:

• the user’s name, matched against a list of
known user names to select a profile for per-
sonalized answer extraction (this feature of
YourQA is not discussed here);

• the current query, used to dynamically update
the stack of recent user questions. The stack
is used by the clarification request detection
module to perform reference resolution, fol-
lowing the algorithm exposed in Section 4.1;

• the resolved question, i.e. the current query
as resolved during followup handling (identi-
cal to the current query if no followup is de-
tected);

• the topic of conversation, i.e. the set of key-
words of the last question issued by the user
which received an answer (e.g. “What is
the world’s longest river?” => {world,
longest, river}). The topic key-
words are used to clarify elliptic questions,
by augmenting the current query keywords
(e.g. “In what country?”=> {country,
world, longest, river}).

To illustrate a typical case of use of the imple-
mentation we start with the AIML category:
<category>
<pattern>DO YOU KNOW *</pattern>
<template><srai>CLARIFY *</srai>
</template>
</category>

Here, the system attempts to clarify the content
of the request following the cue words “Do you
know”. The template:
<template><srai>CLARIFY *</srai>
</template>
invokes a category calling the newly introduced
AIML tag <clarify>:
<category>
<pattern>CLARIFY *</pattern>
<template>
<think><set name=“clarif”>
<clarify></star><clarify>
</set></think>

The <clarify> tag in turn invokes the Java
implementation dedicated to clarification recog-
nition on the text matching the “*” expression,
which follows the strategy exposed in Section
4.1. Finally, the clarified query (assigned to
the context property “clarif”) as well as the
output of the followup detection algorithm (e.g.
“ELLIPTIC”) are used in a conditional branch
to call the appropriate routine:
<condition name=“clarif”
value=“ELLIPTIC”> ...</condition>
<condition name=“clarif”
value=“DOUBLE”> ...</condition>
...
</template>
</category>

4.2.2 Dialogue Interface

YourQA’s interactive interface consists of an ap-
plet window with a left panel where the chat takes
place and a right panel where results are visual-
ized when ready (see Figure 1). As in a normal
chat application, users enter text in a text field and
the current session history as well as the system
replies are visualized in an adjacent text area.

An example dialogue deriving from a real inter-
action with the system is the following:
System0: Welcome!
User1: Hi
S1: Hi! How can I help you?
U2: what is a thermometer?
S2: Possible answers are in the panel on the right.
Are you happy with these answers?
U3: yes!
S3: Good!
U4: How does it measure the temperature?
S4: Do you mean how does a thermometer mea-
sure the temperature?
U5: yes
S5: I found the answers in the panel on the right.
Can I help you further?
U6: . . .

5 Evaluation

While the accuracy of standard QA systems can
be evaluated and compared using quantitative in-
formation retrieval metrics (Voorhees, 2003), di-
alogue interfaces pose complex evaluation chal-
lenges as they differ in appearance, intended ap-
plication and target users.

88



Figure 1: The chat interface (partial view)

Indeed, these are often evaluated using qualita-
tive metrics such as user satisfaction and perceived
time of usage (Walker et al., 2000). Similarly, user
satisfaction questionnaires and interaction logs ap-
pear to be effective tools to evaluate interactive
QA systems (Kelly et al., 2006).

5.1 Experiment design

To quickly conduct a preliminary evaluation of our
prototype, we designed three scenarii where users
had to look for two different items of infomation
relating to the same topic (e.g. Shakespeare’s date
of birth and when he wrote Hamlet), as in the
previous WOz experiment. Users had to choose
one or more topics and use first the non-interactive
Web interface of the QA prototype (handling ques-
tions in a similar way to a search engine) and then
the interactive version depicted in Figure 1 to find
answers.

After using both versions of the prototype, users
filled in a questionnaire about their experience
with the chat version which comprised the same
questions as the WOz questionnaire and the fol-
lowing additional questions:
Q7 Was the pace of interaction with the system ap-
propriate?
Q8 How often was the system sluggish in replying
to you?
Q9 Did you prefer the chat or the Web interface
and why?

Questions Q7 and Q8 could be answered us-
ing a scale from 1 to 5 and were taken from the
PARADISE evaluation questions (Walker et al.,
2000). Q9 was particularly interesting to assess
if and in what terms users perceived a difference

between the two prototypes. All the interactions
were logged.

5.2 Evaluation results
From the initial evaluation, which involved six
volunteers, we gathered the following salient re-
sults:

1. in the chat logs, when pronominal anaphora
was used by the users, the system was able to
resolve it in seven out of nine cases;

2. no elliptic queries were issued, although in
two cases verbs were not spotted by the sys-
tem causing queries to be completed with
previous query keywords;

3. due to the limited amount of AIML cate-
gories of the system, the latter’s requests for
reformulation occurred more frequently than
expected;

4. Users tended not to reply to the chatbot offers
to carry on the interaction explicitly, directly
entering a followup question instead.

From the questionnaire (Tab. 4), we collected
sightly lower user satisfaction levels (Q1 to Q6)
than in the WOz experiment (Section 3).
Users felt the system to reply slowly to the ques-
tions (Q7 and Q8). This is mainly because the
system performs document retrieval in real time,
hence it heavily depends on the network download
speed.
All but one user (i.e. 83.3%) said they preferred
the chat interface of the system (Q9), because of
its liveliness and ability to understand pronominal
anaphora.

89



Question judgment Question judgment
Q1 3.8±.4 Q2 3.7±.8
Q3 3.8±.8 Q4 3.8±.8
Q5 4.0±.9 Q6 4.3±.5
Q7 3.5±.5 Q8 2.3±1.2

Table 4: Questionnaire results: mean±standard
deviation

6 Conclusions

This paper reports the design and implementa-
tion of a chatbot-based interface for an open do-
main, interactive question answering (QA) sys-
tem. From our preliminary evaluation, we
draw optimistic conclusions on the feasibility of
chatbot-based interactive QA.

In the future, we will study more advanced
strategies for anaphora resolution in questions, e.g.
(Poesio et al., 2001) and conduct a more thorough
evaluation of our dialogue interface.

As mentioned earlier, we are also interested in
data-driven answer clarification approaches for the
open domain to further integrate the dialogue com-
ponent into the QA system.

Acknowledgement We are indebted to the
anonymous reviewers for their valuable comments
on the initial version of this paper.

References
N. Dahlbaeck, A. Jonsson, and L. Ahrenberg. 1993.

Wizard of Oz studies: why and how. In Proceedings
of IUI ’93, pages 193–200, New York, NY, USA.
ACM Press.

M. De Boni and S. Manandhar. 2005. Implementing
clarification dialogue in open-domain question an-
swering. Nat. Lang. Eng., 11.

J. Ginzburg, 1996. Interrogatives: Questions, Facts
and Dialogue. Blackwell, Oxford.

A. Hickl and S. Harabagiu. 2006. Enhanced inter-
active question answering with conditional random
fields. In Proceedings of IQA.

J. R. Hobbs. 2002. From question-answering to
information-seeking dialogs.

A. Jönsson and M. Merkel. 2003. Some issues
in dialogue-based question-answering. In Working
Notes from AAAI Spring Symposium, Stanford.

T. Kato, J. Fukumoto, F.Masui, and N. Kando. 2006.
Woz simulation of interactive question answering.
In Proceedings of IQA.

D. Kelly, P. Kantor, E. Morse, J. Scholtz, and Y. Sun.
2006. User-centered evaluation of interactive ques-
tion answering systems. In Proceedings of IQA.

S. Larsson and D. R. Traum. 2000. Information state
and dialogue management in the TRINDI dialogue
move engine toolkit. Nat. Lang. Eng., 6(3-4):323–
340.

S. Larsson, P. Ljunglöf, R. Cooper, E. Engdahl, and
S. Ericsson. 2000. GoDiS—an accommodating di-
alogue system. In C. Sidner, editor, ANLP/NAACL
Workshop on Conversational Systems, pages 7–10,
Somerset, New Jersey. ACL.

MITRE Corporation, 2004. MIDIKI User’s manual.

C. Munteanu and M. Boldea. 2000. MDWOZ: A Wiz-
ard of Oz Environment for Dialog Systems Devel-
opment. In Proceedings of LREC.

M. Poesio, U. Reyle, and R. Stevenson, 2001. Justi-
fied sloppiness in anaphoric reference – Computing
meaning, chapter 3. Kluwer.

S. Quarteroni and S. Manandhar. 2006. User mod-
elling for adaptive question answering and Informa-
tion Retrieval. In Proceedings of FLAIRS.

S. Small, T. Liu, N. Shimizu, and T. Strzalkowski.
2003. HITIQA: an interactive question answering
system- a preliminary report. In Proceedings of the
ACL 2003 workshop on Multilingual summarization
and QA, pages 46–53, Morristown, NJ, USA. ACL.

S. Sutton. 1998. Universal speech tools: the CSLU
toolkit. In Proceedings of the International Confer-
ence on Spoken Language Processing.

E. M. Voorhees. 2003. Overview of the TREC 2003
question answering track. In Text REtrieval Confer-
ence.

M. A. Walker, C. Kamm, and D. Litman. 2000. To-
wards Developing General Models of Usability with
PARADISE. Nat. Lang. Eng. Special Issue on Best
Practice in Spoken Dialogue Systems.

F. Yang, Z. Feng, and G. Di Fabbrizio. 2006. A data
driven approach to relevancy recognition for contex-
tual question answering. In Proceedings of IQA.

90


