
SEMI-AUTOMATED TESTING OF REAL WORLD APPLICATIONS IN NON-MENU-BASED
DIALOGUE SYSTEMS

Pilar Manchón, Guillermo Pérez, Gabriel Amores, Jesús González

University of Seville
{pmanchon, gperez, jgabriel, jesusgm}@us.es

ABSTRACT

Real-world dialogue systems as opposed to demo systems need
in-depth logical testing to ensure robustness. This may indeed be
a cumbersome task when dealing with non-menu-based dialogue
systems, since the number of possible combinations is
unmanageable. In this paper, a new logical testing methodology
is described. Its main objective is to reach a manageable
compromise between coverage and feasibility, in order to ensure
robustness while keeping the amount of testing down to an
affordable level. Since the number of test cases grows
exponentially as applications become more complex and
industry-oriented, it is fundamental to device a methodology to
determine which cases should be tested and what level of
robustness is to be expected with such amount of testing.

Index Terms— User Interface, Testing, Computer interface
human factors.

1. INTRODUCTION

One of the main challenges of real-world applications as
opposed to most showcase or research applications is the in-
depth logical testing and evaluation of the application design
and implementation. Proof-of-concept systems, whose main
purpose is to proof and demo a specific set of strategies and/or
functionalities in fully controlled environments, do not require
the level of robustness of real world applications; therefore, they
do not really entail so exhaustive an evaluation as applications
which will be “out in the open”, exposed to users and
circumstances far from laboratory conditions.
 Although it is widely agreed in the literature that menu-based
systems imply significant drawbacks with respect to more
sophisticated non-menu based systems, it is quite evident that
the former do present a very important advantage with respect to
the latter: predictable and manageable logical testing.
 When it comes to non-menu-based systems, the scenario
changes dramatically: this approach has a very positive impact
in the flexibility and naturalness of the dialogue, and a very
negative impact in the amount of time and resources that must
be invested on each application to ensure robustness.
 The same flexibility and naturalness that makes these
systems more appealing to use originates the testing problems:
any possible combination of events is allowed and no formal
main dialogue flow is defined. It is true that there is usually a
conceptual main flow that seems more likely or ideal.
Nonetheless, it is a much more subjective notion than that of
finite state-based or frame-based systems.
 In this paper, the focus will be placed on Information State
Update based systems (ISU-based) [1]. These systems consist of
an information state, a formal representation of the information
state, a set of dialogue moves, a set of update rules and an
update strategy. Some ISU-based dialogue systems are Godis

[2], Dipper [3] or Delfos NCL[4], the latter being the base
system for the development of this methodology. Delfos NCL
has been designed and implemented to deal with Natural
Command Language Dialogues.
 An ISU-based system can work with several Dialogue
Moves within the same turn (e.g. “switch on the light and open
the door”) which can be theoretically infinite. Furthermore,
these systems do not behave as finite-state automata: given a
current dialogue phase and a new utterance, the next phase is not
univocally determined: it also depends on the context (dialogue
history). These two factors make the universe of possibilities
infinite in two dimensions: by the number of Dialogue Moves
per utterance, and by the number of utterances per dialogue.
 Even though it is sensible to assume that some restrinctions
on both dimensions will not affect dramatically on the system
performance, the figures are still unmaneageble.

3. OBJECTIVES

The overall objective of this methodology is the formalization of
a reliable testing procedure in the described environment that
will ensure a reasonable degree of robustness. For this purpose,
several issues must be taken into account: the methodology must
be semi-automated, must allow for several testers to work
simultaneously, must generate a pre-deployment Logical Flow
Score (LFS), must determine the precise set of test cases to be
used and must take into account all special natural language
dialogue phenomena.

4. THE COVERAGE- FEASIBIITY TRADE-OFF

One of the main challenges here is the determination of the
precise set of test cases that will ensure a high LF-Score. In
Delfos, there are several configuration files that contain all the
relevant information to define a new Natural Command
Language application: a natural language grammar, a lexicon
and the dialogue rule specification. Given that the information in
these files is insufficient to undertake the task at hand,
additional information must be generated: a. The dialogue “hot
zone”, which is somewhat similar to the dialogue flow of a
finite-state or frame-based dialogue system, but defining a set of
possibilities; b. The list of natural language dialogue phenomena
handled by the system.

4.1. Dialogue Rule Unit-Testing
The formal representation of the information state in Delfos is
the DTAC structure, which is a set of attribute-value pairs:
DMOVE, generic type of dialogue move, TYPE, specific type
of dialogue move, ARGS, complementing arguments to
complete the dialogue move, linked by logical operators and

Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 181–182.
Trento, Italy, 30 May – 1 June 2007. Edited by Ron Artstein and Laure Vieu.

181

CONT, the actual content of the move. Each DTAC in the
grammar triggers a rule in the dialogue management
specification file. All possible triggering scenarios for each
dialogue rule must be generated. This is equivalent to software
unit-testing since rules are tested in isolation. The result is a full
list of high level grammar productions that must be tested. It
must be notice that this is quite different from just listing all the
grammar productions in the grammar file, since the correct
grammatical parsing does not guarantee the appropriate system
behavior. Once the tester has gone through all these productions,
the first testing phase will have been completed, ensuring the
correct system behavior inside each independent dialogue rule.

4.2. Inter-Rule Testing
The second testing phase will necessarily entail the correct
system inter-rule behavior, which means ensuring that the
logical dialogue flow involving different rules in any order is
also correct. In order to accomplish this, a hand-made matrix of
possibilities granting scoring the likelihood of the first DMove
being followed by the second DMove has been generated. Given
that matrix, let us define the right terminology:

() ∏
∀

=
arch

archPpathP)(

∑
=∀

==
)|(

)()|(
Ndepthpath

pathPNdepthgraphW

)|(
)()|(

NdepthgraphW
pathPNdepthpathLFS

=
==

)|(

)(
)|(

NdepthgraphW

pathP
NdepthKLFS Kpath

=
==

∑
∈∀

Where ()pathP is the probability of a path within a graph,

)|(NdepthgraphW = is a graph weight given a maximum
path depth = N,)|(NdepthpathLFS = is the Logical Flow
Score given a maximum path depth = N, and K a given set of
paths:
 From the matrix and by means of the algorithm, an ordered
set of test cases will be obtained. Given the full set of cases, the
above-mentioned formulae can then be applied in two different
ways: to determine the LFS (Logical Flow Score) that can be
achieved by testing the top X percentage of the full set, or to
determine the percentage of the ordered set of cases that must be
taken into account in order to achieve a fixed LFS. In either
case it is quite clear that the testing will be thorough and will
achieve the intended degree of robustness, while minimizing the
testing effort.
 The process however does not end here. This methodology
also enables us to compare the baseline hand-made matrix with
real data collected once the application is deployed. A corpus of
real user interactions with the system will make it possible to
generate a new matrix that will be compared to the baseline
matrix. As more and more applications are developed, tested,
launched and then tuned after deployment, more and more
corpora of cases will be collected, which will in time provide a
measurement of the average proximity of the hand-made
matrixes to the real ones. This of course will allow even further
tuning in the test case generation process.

 Testing a complex natural language application is usually a
hairy and expensive issue; however, by optimizing the testing
procedure we can ensure a very high level of robustness, an
optimal use of resources and most likely, a significant reduction
in testing costs.
 In addition to the sets of test cases generated in phases 1 and
2, an additional number of random cases will also be selected in
order to ensure the appropriate system behavior, even in rather
odd or unpredictable circumstances. This set will be randomly
selected from the remaining percentage of potential test cases.

5. CONCLUSIONS & FUTURE WORK

This methodology relays therefore in two main milestones:
defining by hand the “hot zone” for the most likely flow/s to
prioritize their exhaustive testing, and defining the properties
and restrictions of the algorithm that will generate the testing
scripts from the matrix to ensure a finite and valid number of
cases. It also guarantees a well-defined level of testing that will
include the full “hot zone”, i.e., the most likely paths or flows
the users will go through, allow for the test case distribution
among an unrestricted number of testers, minimize the human
error by providing an unambiguous methodology that can easily
be followed, generate metrics to compare, learn and improve the
testing procedure in subsequent cycles, optimize the amount of
testing to be carried out y relation with the application size and
complexity and facilitate the post-deployment tuning of the
application, reduce de testing costs and therefore the overall
application development costs.
 The methodology hereby described represents a significant
improvement with respect to previous situations with loosely
defined or completely undefined methodologies. However, there
is yet a considerable amount of work to be done by hand at this
point. Future work must necessarily involve the automation of a
number of human tasks, and the formalization of some of those
tasks, such as the manual generation of probabilities for the
baseline matrix.

7. ACKNOWLEDGEMENTS

This work was carried out under the “TALK” research project,
funded by EU´s FP6 [ref. 507802].

8. REFERENCES
[1] Amores & Quesada, “Dialogue Moves in Natural Command
Languages,” SIRIDUS Deliverable D1.1, September 2000.

[1] Berstel et al., “A Scalable Formal Method for Design and
Automatic Checking of User Interfaces,” ACM Transactions on
Software Engineering and Methodology, Vol 14, No 2, April
2005.

[3] Hagerer et al., “Efficient Regression Testing of CTI-
Systems: Testing a complex Call-Center Solution”, Annual
Review of Communication Vol 55, Int. Engineering Consortium
(IEC), 2001.

[4] Larsson et al., “Evaluation of Contribution of the
Information State Based View of Dialogue,” SIRIDUS
Deliverable D3.4, October 2002.

182

