
Implementing the Information-State Update Approach to
Dialogue Management in a Slightly Extended SCXML

Fredrik Kronlid
Department of Linguistics and GSLT

Göteborg University
S-405 30 Göteborg

kronlid@ling.gu.se

Torbjörn Lager
Department of Linguistics

Göteborg University
S-405 30 Göteborg

lager@ling.gu.se

Abstract

The W3C has selected Harel statecharts,
under the name of SCXML, as the basis
for future standards in the area of (mul-
timodal) dialogue systems. The purpose
of the present paper is to show that a
moderately extended version of SCXML
can be used to implement the well-known
Information-State Update (ISU) approach
to dialogue management. The paper also
presents an experimental implementation
of Extended SCXML, accessible from a
user-friendly web-interface.

1 Introduction

The W3C has selected Harel statecharts (Harel,
1987), under the name of SCXML (Barnett et
al., 2007), as the basis for future standards in the
area of (multimodal) dialogue systems – replac-
ing a simple and fairly uninteresting “theory of
dialogue” (the form-based dialogue modelling ap-
proach of VoiceXML) with a theory neutral frame-
work in which different approaches to dialogue
modelling could potentially be implemented.1

One interesting and influential framework for
dialogue management that has evolved over the
past years is the so called Information-State Up-
date (ISU) approach, based on the notion of an in-
formation state and its update via rules. The pur-
pose of the present paper is to show that, if prop-
erly extended, SCXML can be used to implement
the ISU approach to dialogue management.

1The present paper is based on the February 2007
SCXML working draft.

2 SCXML = State Chart XML

SCXML can be described as an attempt to render
Harel statecharts in XML. In its simplest form, a
statechart is just a deterministic finite automaton,
where state transitions are triggered by events ap-
pearing in a global event queue.

Just like ordinary finite-state automata, state-
charts have a graphical notation. Figure 1 depicts
a very simple example.

Figure 1: Simple statechart

Any statechart can be translated into a docu-
ment written in the linear XML-based syntax of
SCXML. Here, for example, is the SCXML docu-
ment capturing the statechart in Figure 1:

<scxml initialstate="s1">
<state id="s1">

<transition event="e1" target="s2"/>
</state>
<state id="s2">

<transition event="e2" target="s1"/>
</state>

</scxml>

The document can be executed by an SCXML
conforming interpreter, an approach aiming at
greatly simplifying the step from specification into
running dialogue system application.

Harel (1987) also introduced a number of (at
the time) novel extensions to finite-state automata,
which are also present in SCXML, including:

Hierarchy Statecharts may be hierarchical, i.e. a
state may contain another statechart down to
an arbitrary depth.

Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 99–106.
Trento, Italy, 30 May – 1 June 2007. Edited by Ron Artstein and Laure Vieu.

99

Concurrency Two or more statecharts may be
run in parallel, which basically means that
their parent statechart is in two or more states
at the same time.

Broadcast communication One statechart S1
may communicate with another statechart S2
(running in parallel with S1) by placing an
event in the global event queue that triggers
a transition in S2.

Datamodel SCXML gives authors the ability to
define a data model as part of an SCXML
document. A data model consists of a
<datamodel> element containing one or
more <data> elements, each of which may
contain an XML description of data.

For our ISU implementations, we will find uses
for all of these features, but will sometimes find is
necessary to add a few novel ones as well. For-
tunately, SCXML is designed with extensibility in
mind (Barnett et al., 2007), and our own investiga-
tions suggest that there is indeed room for simple
extensions that would increase the expressivity of
SCXML even further.

3 The Information State Update
Approach to Dialogue Modelling

Simplifying somewhat, the ISU approach to dia-
logue modelling can be characterized by the fol-
lowing components:

1. An information state representing aspects of
common context as well as internal motivat-
ing factors

2. A set of dialogue moves that will trigger the
update of the information state

3. A set of declaratively stated update rules gov-
erning the updating of the information state

The idea of information state update for dialogue
modelling is centred around the information state
(IS). Within the IS, the current state of the dialogue
is explicitly represented. “The term Information
State of a dialogue represents the information nec-
essary to distinguish it from other dialogues, rep-
resenting the cumulative additions from previous
actions in the dialogue, and motivating future ac-
tion” (Larsson and Traum, 2000).

Dialogue moves are meant to serve as an ab-
straction between the large number of different

messages that can be sent (especially in natural
language) and the types of updates to be made
on the basis of performed utterances (Larsson and
Traum, 2000, p. 5). Dialogue moves trigger non-
monotonic updates of the IS. Thus, user utterances
(or other kinds of user input) are matched against
a set of possible update rules that change the IS in
the appropriate places (e.g. a new value is entered
into a slot). A single user utterance may unleash
a whole chain of updates, allowing for generalisa-
tions beyond monolithic utterance updates.

The ISU approach should be seen as a rather
abstract and relatively “empty” framework that
needs to be filled with theoretical content to be-
come a full-fledged theory of dialogue. For ex-
ample, Larsson (2002) develops and implements a
theory of Issue-Based Dialogue Management, tak-
ing Ginzburg’s (1996) concept of Questions Un-
der Discussion (QUD) as a starting point. QUD
is used to model raising and addressing issues in
dialogue (including the resolution of elliptical an-
swers). Issues can also be raised by addressing
them, e.g. by giving an answer to a question that
has not be explicitly asked (question accommoda-
tion).

Two well-known implementations of the ISU
approach to dialogue management are TrindiKit
(Larsson and Traum, 2000) and DIPPER (Bos et
al., 2003). Implemented/embedded in Prolog and
relying to a large extent on properties of its host
language, TrindiKit was the first implementation
of the ISU approach. DIPPER is built on top of the
Open Agent Architecture (OAA), supports many
off-the-shelf components useful for spoken dia-
logue systems, and comes with a dialogue man-
agement component that borrows many of the core
ideas of the TrindiKit, but is “stripped down to the
essentials, uses a revised update language (inde-
pendent of Prolog), and is more tightly integrated
with OAA” (Bos et al., 2003). Other implementa-
tions exist, but TrindiKit and DIPPER are proba-
bly the most important ones.

4 Implementing ISU in SCXML

We suggest that most systems implementing the
ISU approach to dialogue management can be
reimplemented in (Extended) SCXML, exploiting
the mapping between the ISU components and
SCXML elements depicted in Table 1.

Of course, we cannot really prove this claim,
but by taking a simple example system and reim-

100

The ISU Approach SCXML
Information state Datamodel
Dialogue move Event
Update rule Transition

Table 1: From ISU into Extended SCXML

plement it in SCXML we hope to be able to con-
vince the reader of the viability of our approach.
We choose to target the IBiS1 system from (Lars-
son, 2002), and thus most of our discussion will
be comparing TrindiKit with SCXML, but we also
hint at how DIPPER compares with SCXML. As
we shall see, our conclusion is that SCXML could
potentially replace them both.

4.1 Information states as datamodels

The expressivity of the SCXML <datamodel>
is perfectly adequate for representing the required
kind of information structures. A typical IBiS1
information state may for example be represented
(and initialised) as follows:

<datamodel>
<data name="IS">
<private>

<agenda>{New Stack init}</agenda>
<plan>{New Stack init}</plan>
<bel>{New Set init}</bel>

</private>
<shared>

<com>{New Set init}</com>
<qud>{New Stack init([q])}</qud>
<lu>

<speaker>usr</speaker>
<move>ask(q)</move>

</lu>
</shared>

</data>
</datamodel>

Here, the datamodel reflects the distinction be-
tween what is private to the agent that ‘owns’
the information state, and what is shared between
the agents engaged in conversation. Note that
IS.shared.qud points to a stack with q on top,
indicating that it is known by both parties that the
question q is “under discussion”.2

4.2 Dialogue moves as SCXML events

The closest SCXML correlate to a dialogue move
is the notion of an event. An SCXML event
has a name, and an optional data payload. The
(current) SCXML draft does not represent events

2We use q and r here as placeholders for a question and
a response, respectively.

formally, but for the purpose of the present pa-
per we will represent them as records with a la-
bel (for representing their name) and a set of
feature-value pairs (for representing the data pay-
load). An ASK move where a speaker a is ask-
ing a question q may thus be represented as:
says(speaker:a move:ask(q))

4.3 Update rules as transitions

A TrindiKit ISU-style update rule consists of a
set of applicability conditions and a set of effects
(Larsson and Traum, 2000, p. 5), and a collec-
tion of such rules forms what is essentially a sys-
tem of condition-action rules – a production sys-
tem. While SCXML is easily powerful enough
to implement such a system, the expressivity of
the language for stating the conditions is not ad-
equate for our purpose, since there is no mecha-
nism in place for carrying information (i.e. infor-
mation dug up from the IS) from the conditions
over to the actions. This is where we are suggest-
ing a small extension. We propose that a pcond
attribute be added to the <transition> ele-
ment, the value of which is a Prolog style query
rather than an ordinary boolean expression, i.e. a
query that evaluates to true of false (just like an
ordinary boolean expression) but which will pos-
sibly also bind variables if evaluated to true. We
suggest that the names of these variables be de-
clared in a new attribute vars, and that the values
of them are made available in the actions of the
<transition>.

For example, an update rule written in the fol-
lowing way in the Prolog-based TrindiKit notation
rule(integrateSysAsk,

[$/shared/lu/speaker = sys,
$/shared/lu/move = ask(Q)],

[push(/shared/qud, Q)]).

may be written as follows in Extended SCXML:
<transition vars="Q"

pcond="IS.shared.lu.speaker=sys
IS.shared.lu.move=ask(Q)"

target="downdateQUD">
<script>{IS.shared.qud push(Q)}</script>

</transition>

4.4 The update algorithm as a statechart

Dialogue management involves more than one
rule, and the application of the rules needs to be
controlled, so that the right rules are tried and ap-
plied at the right stage in the processing of a di-
alogue. Furthermore, we require three kinds of
rules: 1) rules that perform unconditional main-
tenance operations on the datamodel (representing

101

the information state), 2) rules that enable events
(representing dialogue moves) to update the data-
model, and 3) rules that when triggered by cer-
tain configurations of the datamodel updates it, i.e.
changes its configuration. (The above example is
of the third kind.)

Here is an example of the first kind of rule, re-
sponsible for first clearing the agenda, and then
transferring to the grounding state:

<state id="init">
<transition target="grounding">
<script>

{IS.private.agenda clear}
</script>

</transition>
</state>

(We shall return to the significance of the enclos-
ing state further down.) For an example of the sec-
ond kind of rule we offer:
<state id="grounding">

<transition event="says"
target="integrate">

<assign location="IS.shared.lu.move"
expr="Eventdata.move"/>

<assign location="IS.shared.lu.speaker"
expr="Eventdata.speaker"/>

</transition>
</state>

This rule provides a bridge between the events
representing dialogue moves and the datamodel
representing the IS. If an event of the form
says(speaker:sys move:answer(r))
appears first in the event queue when the
statechart is in state grounding, the rule
will set IS.shared.lu.move to the value
answer(r) and IS.shared.lu.speaker
to sys, and then a transfer to the state
integrate will take place. In this state, three
transitions representing update rules of the third
kind are available:
<state id="integrate">

<transition vars="Q"
pcond="IS.shared.lu.speaker=sys

IS.shared.lu.move=ask(Q)"
target="downdateQUD">

<script>{IS.shared.qud push(Q)}</script>
</transition>
<transition vars="Q"

pcond="IS.shared.lu.speaker=usr
IS.shared.lu.move=ask(Q)"

target="downdateQUD">
<script>

{IS.shared.qud push(Q)}
{IS.private.agenda push(respond(Q))}

</script>
</transition>
<transition vars="Q R"

pcond="IS.shared.lu.move=answer(R)
{IS.shared.qud top(Q)}
{Domain.relevantAnswer Q R}"

target="downdateQUD">
<script>{IS.shared.com add(Q#R)}</script>

</transition>
</state>

The transitions are tried in document order and
given the current datamodel the last one will be
the one chosen for execution. Its effect is that q#r
(i.e. the pair of q and r, representing a proposi-
tion) will be added to the set at IS.shared.com
i.e. the set of beliefs that the user and system
shares (or “the common ground”). Thereafter a
transition to the state downdateQUD will take
place:
<state id="downdateQUD">

<transition vars="Q R"
pcond="{IS.shared.qud top(Q)}

{Domain.relevantAnswer Q R}
{IS.shared.com member(Q#R)}"

target="load_plan">
<script>{IS.shared.qud pop}</script>

</transition>
<transition target="load_plan"/>

</state>

In this state, either the first of its transitions will
trigger, first popping the QUD and then leading to
the load plan state, or else the second transi-
tion will trigger, also leading to load plan, but
this time without popping the QUD. That is, the
state will try to downdate the QUD. Given the cur-
rent configuration of the datamodel in our exam-
ple, the first rule will trigger, the element on top
of the stack at IS.shared.qud will be popped,
and (the relevant part of) the datamodel end up as
follows:3

<datamodel>
<data name="IS">

<private>
<agenda>[]</agenda>
<plan>[]</plan>
<bel>{}</bel>

</private>
<shared>

<com>{q#r}</com>
<qud>[]</qud>
<lu>

<speaker>sys</speaker>
<move>answer(r)</move>

</lu>
</shared>

</data>
</datamodel>

Note how the underlying DFA ‘backbone’ controls
when certain classes of rules are eligible for execu-
tion. In statechart notation, the relevant statechart
can be depicted as in Figure 2.4 By comparison, in
TrindiKit the control of the application of update
rules is handled by an update algorithm written in
a procedural language designed for this purpose.

3Here, [] and {} indicate the empty stack and the empty
set, respectively.

4The details of the load plan and exec plan states
may be found in our web-based demo.

102

Figure 2: Update statechart

The update algorithm (or a version of it) used by
IBiS1 is shown here:

if not LATEST_MOVES == failed
then (init,

grounding,
integrate,
try downdate_qud,
try load_plan,
repeat exec_plan)

Note that the statechart in Figure 2 does basi-
cally the job of this algorithm. Terms like “init”,
“grounding”, “integrate”, “downdate qud”, etc.
refer to TrindiKit rule classes. In our statechart,
they correspond to states.

4.5 Implementing modules as statecharts

The update statechart in Figure 2 basically cor-
responds to the update module in IBiS1, respon-
sible for updating the information state based on
observed dialogue moves. There is also a select
module in IBiS1, responsible for selecting moves
to be performed, which space does not allow us to
go into detail about here (but see our web-based
demo).

Together, the update module and the select
module forms the Dialogue Move Engine (DME)
– the dialogue manager proper. As can be seen in
Figure 3, DME processing starts in the select state
and then alternates between update and select.

Figure 3: The Dialogue Move Engine

4.6 Interpretation and generation
SCXML is not supposed to directly interact with
the user. Rather, it requests user interaction by in-
voking a presentation component running in paral-
lel with the SCXML process, and communicating
with this component through asynchronous events.
Presentation components may support modalities
of different kinds, including graphics, voice or
gestures. Concentrating on presentation compo-
nents for spoken language dialogue (a.k.a. “voice
widgets”) we may assume that they include things
like a TTS component for presenting the user with
spoken information and an ASR component to col-
lect spoken information from the user.

For example, our interpretation module may in-
voke an ASR component, like so:5

<state id="interpret">
<invoke targettype="vxml"

src="grammar.vxml#main"/>
</state>

and our generation module may invoke a TTS
component as follows:
<state id="generate">
<invoke targettype="vxml"

src="generate.vxml#prompt"/>
</state>

4.7 The dialogue system statechart
The TrindiKit architecture also features a con-
troller, wiring together the other modules neces-
sary for assembling a complete dialogue system,
either in sequence or through some asynchronous
(i.e. concurrent) mechanism (Larsson, 2002). We
choose here to exemplify an asynchronous archi-
tecture, taking advantage of the concurrency of-
fered by SCXML. The statechart corresponding to
a full dialogue system might look like in Figure 4.

Figure 4: Parallel control

The dashed lines show – using standard statechart
graphical notation – that the interpretation mod-

5Here we use VoiceXML for our example presentation
components. This is not optimal, but we take comfort in
the fact that the next major version of VoiceXML (known as
V3) will be redesigned from the bottom and up with uses like
these in mind.

103

ule, the DME and the generation module are run
in parallel. In SCXML the full dialogue system
may be sketched as follows:
<parallel id="IBiS1">

<state id="interpret" .../>
<state id="DME">
<initial>

<transition target="select"/>
</initial>
<state id="select" .../>
<state id="update" .../>

</state>
<state id="generate" .../>

</parallel>

Communication between the modules of the sys-
tem – between the interpreter, generator and DME
– is performed in the broadcast style supported by
SCXML, by letting one module place events in the
global event queue – events to be picked up by an-
other module. Comparing SCXML and TrindiKit,
we note that the SCXML notion of an event queue
seems to do the job of TrindiKit’s module inter-
face variables (MIVs), which is exactly this – to
enable modules to interact with each other.

4.8 From TrindiKit to SCXML: a summary
In Table 2, we summarize the relevant correspon-
dences between TrindiKit and our SCXML for-
malization of the ISU approach to dialogue man-
agement.

TrindiKit SCXML
Information state Datamodel
Dialogue move Event
Module interface vars Event queue
Update rule Transition
Rule class State (simple)
Update algorithm State (complex)
Module State (complex)
Control algorithm State (complex)

Table 2: From TrindiKit into Extended SCXML

We note that SCXML is considerably more simple
than TrindiKit, in that rule classes, update algo-
rithms, modules and control algorithms are all rep-
resented as (simple or complex) states/statecharts.

4.9 From DIPPER to SCXML
(Bos et al., 2003) illustrate the DIPPER architec-
ture and information state update language with an
example which implements a “parrot”, where the
system simply repeats what the user says. These
are the information state and the relevant update
rules, in DIPPER notation:

is:record([input:queue(basic),
listening:basic,
output:queue(basic)]).

urule(timeout,
[first(isˆinput)=timeout],
[dequeue(isˆinput)]).

urule(process,
[non_empty(isˆinput)],
[enqueue(isˆoutput,first(isˆinput)),
dequeue(isˆinput)]).

urule(synthesise,
[non_empty(isˆoutput)],
[solve(text2speech(first(isˆoutput)),[]),
dequeue(isˆoutput)]).

urule(recognise,
[isˆlistening=no],
[solve(X,recognise(’.Simple’,10),

[enqueue(isˆinput,X),
assign(isˆlistening,no)]),

assign(isˆlistening,yes)]).

Here is our translation into SCXML:
<scxml initialstate="process">
<datamodel>

<data name="IS">
<input>{New Queue init}</input>
<output>{New Queue init}</output>

</data>
</datamodel>
<state id="process">

<transition cond="{IS.input first($)}==timeout">
<script>

{IS.input dequeue}
</script>

</transition>
<transition cond="{Not {IS.input isEmpty($)}}">

<script>
{IS.output enqueue({IS.input first($)})}
{IS.input dequeue}

</script>
</transition>
<transition cond="{Not {IS.output isEmpty($)}}">

<send event="speak"
expr="{IS.output first($)}"/>

<script>
{IS.output dequeue}

</script>
</transition>
<transition target="listening"/>

</state>
<state id="listening">

<onentry>
<send event="recognise"/>

</onentry>
<transition event="recResult" target="process">

<script>
{IS.input enqueue(Eventdata)}

</script>
</transition>

</state>
</scxml>

We shall use this example as our point of departure
when comparing DIPPER, SCXML and TrindiKit.
First, we note that DIPPER uses the solveables of
OAA for the purpose of enabling modules to in-
teract with each other. In the case of the fourth
rule above, a solvable is sent to the OAA agent
responsible for speech recognition, which within
10 seconds will bind the variable X to either the
recognition result or to the atom timeout. This
value of X will then be added to the input queue.
Our SCXML version works in a similar fashion.
An event recognise is sent in order to activate

104

the speech recognition module, and a transition is
triggered by the recResult event returned by
this module. The Eventdata variable will be
bound to the recognition result.

Secondly, in the DIPPER rule set, an informa-
tion state field ‘listening’ is used (as we see it) to
simulate a finite state automaton with two states
listening=yes and listening=no. The
idea is to control the application of the fourth rule
– it is meant to be applicable only in the ‘state’
listening=no. The general strategy here ap-
pears to be to take advantage of the fact that a pro-
duction system can easily simulate a finite state
automaton. DIPPER can thus eliminate the need
for an update algorithm in the style of TrindiKit,
but at the expense of complicating the rules.

Note that the ‘listening’ field is not required
in the SCXML version, since we can use two
“real” states instead. Indeed, looking at TrindiKit,
DIPPER and SCXML side by side, comparing
TrindiKit’s use of an update algorithm, DIPPER’s
DFA simulation ‘trick’, and SCXML’s use of real
states, we think that SCXML provides the neatest
and most intuitive solution to the problem of con-
trolling the application of update rules.

Finally, few (if any) extensions of SCXML ap-
pear to be needed in order to reconstruct DIP-
PER style dialogue managers in SCXML. This is
mainly due to the fact that DIPPER does not make
use of Prolog style conditions the way TrindiKit
does. Whether the availability of Prolog style con-
ditions in this context is crucial or not is, in our
opinion, still an open question.

5 A More Abstract Point of View

In a recent and very interesting paper Fernándes
and Endriss (2007) present an hierarchy of abstract
models for dialogue protocols that takes as a start-
ing point protocols based on deterministic finite
automata (DFAs) and enhances them by adding a
‘memory’ in the form of an instance of an abstract
datatype (ADT) such as a stack, a set or a list to the
model. They show that whereas a DFA alone can
handle only simple dialogue protocols and conver-
sational games, a DFA plus a set can handle also
for example the representation of a set of beliefs
forming the common ground in a dialogue, a DFA
plus a stack is required if we want to account for
embedded subdialogues, questions under discus-
sion á la Ginzburg, etc., and a DFA plus a list is
needed to maintain an explicit representation of di-

alogue history.
Space does not allow us to give full justice to

the paper by Fernándes and Endriss here. We only
wish to make the point that since an SCXML state
machine at its core can be seen as just a fancy form
of a DFA, and since SCXML does indeed allow us
to populate the datamodel with instances of ADTs
such as stacks, sets and list, it seems like SCXML
can be regarded as a concrete realization very “true
to the spirit” of the more abstract view put for-
ward in the paper (and more true to this spirit than
TrindiKit or DIPPER). Having said this, we has-
ten to add that while we think that the DFA core
of SCXML is well-designed and almost ready for
release, the datamodel definitely needs more work,
and more standardization.

6 An SCXML Implementation

We have built one of the first implemen-
tations of SCXML (in the Oz programming
language, using Oz as a scripting language).
A web interface to a version of our soft-
ware – called Synergy SCXML – is available
at <www.ling.gu.se/˜lager/Labs/SCXML-Lab/>.
Visitors are able to try out a number of small ex-
amples (including a full version of the SCXML-
IBiS1 version described in the present paper) and
are also able to write their own examples, either
from scratch, or by modifying the given ones.6

7 Summary and Conclusions

We summarize by highlighting what we think are
the strong points of SCXML. It is:

• Intuitive. Statecharts and thus SCXML are
based on the very intuitive yet highly abstract
notions of states and events.

• Expressive. It is reasonable to view SCXML
as a multi-paradigm programming language,
built around a declarative DFA core, and ex-
tended to handle also imperative, event-based
and concurrent programming.

• Extensible. SCXML is designed with exten-
sibility in mind (Barnett et al., 2007), and
our own investigations suggest that there is
indeed room for simple extensions that will

6Our implementation is not the only one. Commons
SCXML is an implementation aimed at creating and main-
taining an open-source Java SCXML engine, available from
<http://jakarta.apache.org/commons/scxml/>. There are
most likely other implementations in the works.

105

increase the expressivity of SCXML consid-
erably.

• Theory neutral. Although it is clear that the
framework is suitable for implementing both
simple DFA-based as well as form-based dia-
logue management, the framework as such is
fairly theory neutral.

• Visual. Just like ordinary finite-state au-
tomata, statecharts have a graphical notation
– for “tapping the potential of high band-
width spatial intelligence, as opposed to lex-
ical intelligence used with textual informa-
tion” (Samek, 2002).

• Methodologically sound. The importance of
support for refinement and clustering should
not be underestimated. In addition, the
fact that SCXML is closely aligned to state-
chart theory and UML2 will help those using
model driven development methodologies.

• XML enabled. Thus, documents may be
validated with respect to a DTD or an XML
Schema, and there are plenty of powerful and
user friendly editors to support the authoring
of such documents.

• Part of a bigger picture. SCXML is de-
signed to be part of a framework not just
for building spoken dialogue systems, but
also for controlling telephony – a framework
in which technologies for voice recognition,
voice-based web pages, touch-tone control,
capture of phone call audio, outbound call-
ing (i.e. initiate a call to another phone) all
come together.

• Endorsed by the W3C. The fact that
SCXML is endorsed by the W3C may trans-
late to better support in tooling, number of
implementations and various runtime envi-
ronments.

We conclude by noting that despite the fact that
SCXML was not (as far as we know) designed for
the purpose of implementing the ISU approach to
dialogue management, it is nevertheless possible
to do that, in the style of TrindiKit (provided the
proposed rather moderate extensions are made) or
in the style of DIPPER. Indeed, we believe that
SCXML could potentially replace both TrindiKit
and DIPPER.

All in all, this should be good news for aca-
demic researchers in the field, as well as for the
industry. Good news for researchers since they
will get access to an infrastructure of plug-and-
play platforms and modules once such platforms
and modules have been built (assuming they will
be built), good news for the industry since a lot
of academic research suddenly becomes very rele-
vant, and good news for the field as a whole since
SCXML appears to be able to help bridging the
gap between academia and industry.

8 Acknowledgements

A preliminary version of this paper has been pre-
sented in a seminar at the Centre for Language
Technology (CLT) in Göteborg. We are grateful to
the members of this seminar for reading and dis-
cussing the paper, and for proposing useful addi-
tions and improvements.

References
Jim Barnett et al. 2006. State Chart XML

(SCXML): State Machine Notation for Control Ab-
straction. http://www.w3.org/TR/2007/WD-scxml-
20070221/.

Johan Bos, Ewan Klein, Oliver Lemon and Tetsushi
Oka. 2003. DIPPER: Description and Formalisa-
tion of an Information-State Update Dialogue Sys-
tem Architecture. In 4th SIGdial Workshop on Dis-
course and Dialogue, ACL, Sapporo.

Raquel Fernández and Ulle Endriss. 2007. Abstract
Models for Dialogue Protocols. In Journal of Logic,
Language and Information vol. 16, no. 2, pp. 121-
140, 2007.

Jonathan Ginzburg. 1996. Interrogatives: Questions,
Facts and Dialogue. In S. Lappin (ed.): Handbook
of Contemporary Semantic Theory, Blackwell.

David Harel. 1987. Statecharts: A Visual Formalism
for Complex Systems. In Science of Computer Pro-
gramming 8, North-Holland.

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the TRINDI Di-
alogue Move Engine Toolkit. In Natural Language
Engineering, vol. 6, no. 3-4, pp. 323-340, 2000.

Staffan Larsson. 2002. Issue-Based Dialogue Man-
agement. Ph.D. thesis, Göteborg University.

Miro Samek. 2002. Practical Statecharts in C/C++.
CMPBooks.

106

