
Dialog OS: an extensible platform for teaching spoken dialogue systems

Daniel Bobbert
CLT Sprachtechnologie GmbH

Science Park Saar
66123 Saarbrücken, Germany
bobbert@clt-st.de

Magdalena Wolska
Computational Linguistics
Universität des Saarlandes
66041 Saarbrücken, Germany
magda@coli.uni-sb.de

1 Introduction

With the area of spoken dialogue systems rapidly
developing, educational resources for teaching ba-
sic concepts of dialogue systems design in Lan-
guage Technology and Computational Linguistics
courses are becoming of growing importance. Di-
alog OS1 is an extensible platform for develop-
ing (spoken) dialogue systems that is intended,
among others, as an educational tool.2 It al-
lows students to quickly grasp the main ideas of
finite-state-based modelling and to develop rela-
tively complex applications with flexible dialogue
strategies. Thanks to Dialog OS’ intuitive in-
terface and extensibility, system implementation
tasks can be distributed among non-technically-
and technically-oriented students making the tool
suitable for a variety of courses with participants
of different backgrounds and interests. Below, we
give a brief overview of the framework and out-
line some of the student projects in which it was
used as a basis for dialogue management and mod-
elling.

2 Dialog OS: a brief overview

Dialog OS is an extensible platform for managing
and modelling (spoken) dialogue systems. It com-
prises an intuitive Graphical User Interface (GUI),
default dialogue components, and a communica-
tions API to build new components. Dialog OS
is written in Java and operates in a client-server
mode. The central component can handle connec-
tions with an arbitrary number of client compo-
nents (or “Devices”, in Dialog OS terminology)
via TCP/IP sockets. Technical requirements for
Dialog OS are: 1 GHz Pentium, 512 MB RAM,
Windows 2000/XP, Java Runtime 1.5 or newer.

1Dialog OS is a registered trademark of CLT Sprachtech-
nologie GmbH. Other product and company names listed are
trademarks or trade names of their respective owners.

2Dialog OS is developed and distributed by CLT
Sprachtechnologie GmbH: http://www.clt-st.de/
dialogos

Default components Dialog OS comes with
built-in modules for professional quality speech
input and output using technology from Nuance
and AT&T. As part of the platform, Dialog OS
provides a number of default input/output device
clients that can be directly connected without ex-
tra programming. Among those are: a simple text
console for text-based input and output, a sound
player, and a default client for a connection to an
SQL database. CLT can also provide built-in con-
nections to a number of other research and com-
mercial Automatic Speech Recognition (ASR) and
Text-To-Speech (TTS) systems.
Extensibility Dialog OS can be extended to
work with an arbitrary number of clients through
a Java-based API. The low-level communication
between Dialog OS and the clients is handled by
a dedicated internal protocol and remains invisible
to the user. Programming a new client involves
a Java implementation of a high-level functional
protocol for the given client, without having to
deal with the details of network connection with
the dialogue engine itself.
FSA-based dialogue modelling The central
part of the dialogue system is the dialogue model.
Dialog OS offers an intuitive way of modelling
dialogues using Finite State Automata (McTear,
2002). Building a dialogue model consists of
adding and linking dialogue graph nodes repre-
sented as icons on a GUI workspace. Those in-
clude input/output nodes and internal nodes, for
example, to execute scripts, set and test variables,
enter a sub-graph (i.e. execute a sub-automaton).3
The dialogue model is stored in an XML format.
Dialog OS builds on the functionality of its pre-

decessor, DiaMant (Fliedner and Bobbert, 2003).
Below, we list some of the features taken over, ex-
tended or enhanced in Dialog OS:

3The expressive power of the dialogue models is effec-
tively that of push-down automata.

Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 159–160.
Trento, Italy, 30 May – 1 June 2007. Edited by Ron Artstein and Laure Vieu.

159



User input The input nodes for text-based or
spoken interaction allow to specify a list of ex-
pected input values; outgoing edges are created
automatically. User input may be matched directly
against the list, or against a regular expression. For
spoken input via default ASR components, both
the recognised string and the recognition confi-
dences can be accessed.
Built-in data types Global variables can be of
simple types (e.g. String, Integer, etc.) as well as
more complex data structures of key-value pairs.
Scripting language Dialog OS includes an inter-
preter of a JavaScript-like scripting language for
simple data manipulation functions, e.g., to match
input against a regular expression. These can be
integrated through a Script node.
Sub-automata The Procedure node allows for
flexible and modular dialogue modelling. Recur-
ring parts of the dialogue can be saved as individ-
ual parameterisable sub-automata, direct counter-
parts of sub-routines in programming languages.
Wizard-of-Oz (WOz) mode Dialog OS can be run
in WOz mode (Fraser and Gilbert, 1991) in which
one or more of the “Devices” are simulated and di-
alogue execution details are saved in logfiles; this
allows to set up small-scale WOz experiments.

3 Dialog OS in the classroom

We have been using Dialog OS and its predecessor
at Saarbrücken in a number of courses involving
spoken dialogue systems. Notable features that
make it suitable for educational purposes include:
Intuitive interface: Learning to use Dialog OS
takes very little time. Thanks to the GUI, even
non-computational students can easily configure a
functional system with little (or even no) knowl-
edge of programming. The low learning overhead
allows to concentrate on modelling interesting di-
alogue phenomena rather than technical details.
High-level language for building new compo-
nents: A Java-based API makes the develop-
ment process efficient and allows for the final sys-
tem to be built on a single programming platform
and kept highly modular.4
Below we briefly outline larger spoken dialogue

systems developed as part of software projects us-
ing the Dialog OS framework.

4A GUI is also part of CSLU (McTear, 1999) and
DUDE (Lemon and Liu, 2006) dialogue toolkits. However,
DUDE has not yet been tested with novice users, while ex-
tending CSLU Toolkit involves programming in C, rather
than in a higher-level language such as Java.

Talking Robots with LEGO MindStorms R�
Within two runs of the course, students built var-
ious speech-enabled mobile robots using LEGO
and Dialog OS as dialogue framework (Koller
and Kruijff, 2004). Integration involved writing a
client to control the MindStorms RCX (Dialog OS
provides built-in support for MindStorms NXT).
Luigi Legonelli, the Shell Game robot, and a mod-
ified version of Mico, the bar-keeper,5 have been
presented at CeBIT ’03 and ’06, respectively.
Campus information system A group of three
students built a spoken information system for
Saarland University campus. The system can an-
swer questions on employee’s offices, telephone
numbers, office locations, etc. The highlights of
the system are modularity6 and an adaptive clar-
ification model needed to handle many foreign
names and foreign user accents.
Talking elevator In two editions of this course,
students built speech interfaces to the elevators in
the institute’s buildings. In the first course, a sim-
ple mono-lingual system was developed. In an
ongoing project, students are building a trilingual
system with speaker identification, using their own
version of a Nuance client and an elevator client
that communicates with the elevator hardware via
a serial protocol.
References

G. Fliedner and D. Bobbert. 2003. DiaMant: A Tool for
Rapidly Developing Spoken Dialogue Systems. In Proc.
of DiaBruck, pages 177–178, Wallerfangen, Germany.

N. M. Fraser and G. N. Gilbert. 1991. Simulating speech
systems. Computer Speech and Language, 5:81–99.

A. Koller and G-J. M. Kruijff. 2004. Talking robots with lego
mindstorms. In Proc. of COLING-04, pages 336–342.

O. Lemon and X. Liu. 2006. DUDE: A dialogue and un-
derstanding development environment, mapping business
process models to information state update dialogue sys-
tems. In Proc. of EACL-06, pages 99–102, Trento, Italy.

M. F. McTear. 1999. Using the CSLU toolkit for
practicals in spoken dialogue technology. In Proc. of
ESCA/SOCRATES Workshop on Method and Tool Innova-
tions for Speech Science Education, pages 113–116, UK.

M. F. McTear. 2002. Spoken dialogue technology: enabling
the conversational user interface. ACM Computing Sur-
veys (CSUR), 34(1):90–169.

5Mico’s mechanics were substantially re-designed by
CLT, however, the dialogue model was, for the most part,
taken over from the student project.

6Currently, the system supports only German, but the
modular design was motivated by anticipated extensions for
English and French.

160


