
Towards Flexible, Domain-Independent Dialogue Management using
Collaborative Problem Solving

Nate Blaylock
40 South Alcaniz Street

Institute for Human and Machine Cognition (IHMC)
Pensacola, Florida, USA
blaylock@ihmc.us

Abstract

In this paper, we describe our first ef-
forts at building a domain-independent di-
alogue manager based on a theory of col-
laborative problems solving. We describe
the implemented dialogue manager and
look critically at what level of domain
independence was achieved and what re-
mains to be done.

1 Introduction

We are interested in buildingconversational
agents—autonomous agents which can commu-
nicate with humans through natural language di-
alogue. In order to support dialogue with au-
tonomous agents, we need to be able to model di-
alogue about the range of activities an agent may
engage in, including such things as goal evalua-
tion, goal selection, planning, execution, monitor-
ing, replanning, and so forth.

Current models of dialogue are only able to
support a small subset of these sorts of agent
activities. Plan-based dialogue models, for ex-
ample, typically model either planning dialogue
(e.g., (Grosz and Sidner, 1990)) or execution di-
alogue (e.g., (Cohen et al., 1991)), but not both.
Also, most plan-based dialogue models make the
assumption that agents already have a high-level
goal which they are pursuing.

In our previous work (Blaylock and Allen,
2005), we presented a model of dialogue based
on collaborative problem solving (CPS), which in-
cludes the set of agent activities mentioned above.
This CPS-based model of dialogue allows us to
model a much wider range of dialogue types and
phenomena than previous models.

Besides allowing us to model more complex
types of dialogue, it is the hope that CPS dialogue

will help with two other important aspects of dia-
logue:flexibility andportability. By flexibility, we
mean the ability of the system to cover all natural
dialogues (i.e., dialogues that humans would natu-
rally engage in) for a given domain. Flexibility is
important for naturalness and ease of use, as well
as making sure we can understand and incorporate
anything the user might say to the system.

Portability refers to to the ease with which the
system can be modified to work in new domains.
Portability is especially important to the com-
mercial viability of dialogue systems. For dia-
logue management, our goal is to create a domain-
independent dialogue manager that supports “in-
stantiation” to a particular domain through the
use of a small amount of domain-specific knowl-
edge. Several recent dialogue managers approach
this level of portability ((Larsson, 2002; Bohus
and Rudnicky, 2003), inter alia), however, these
are based on models of dialogue which do not
cover the range of agent activity that we need (see
(Blaylock, 2005) for arguments), and they sacri-
fice some flexibility. Flexibility is lost, as these
dialogue managers require a dialogue designer to
specify so-called dialogue plans, as part of the
domain-specific information fed to the domain-
independent dialogue manager. However, these di-
alogue plans contain not only domain-dependent
task knowledge (e.g., the process for making a
travel reservation), but also knowledge about how
to interactwith a user about this knowledge (e.g.,
greet the user, find out travel destination). This
essentially puts the onus of dialogue flexibility in
the hands of the dialogue system designer, limit-
ing flexibility to the set of dialogues “described”
or “encoded” by the dialogue plan. It is our hope
that CPS-based dialogue will result in more flexi-
bility and better portability than previous systems

Decalog 2007: Proceedings of the 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 91–98.
Trento, Italy, 30 May – 1 June 2007. Edited by Ron Artstein and Laure Vieu.

91

by factoring this interaction knowledge out from
domain-dependent task knowledge.

In this paper, we report the progress of our first
efforts in building a CPS-based dialogue manager
within the SAMMIE-05 dialogue system. We will
first briefly describe the CPS dialogue model, and
then the SAMMIE-05 dialogue system. We then
discuss the implementation SAMMIE-05 dialogue
manager and then comment on general progress
towards domain independence. We then mention
related work and talk about future directions.

2 Modeling Dialogue as Collaborative
Problem Solving

In this section, we very briefly describe our CPS
model of dialogue. Details of the model can be
found in (Blaylock and Allen, 2005; Blaylock,
2005). We first describe our model of collabora-
tive problem solving, and then how that is used to
model dialogue.

2.1 A Model of Collaborative Problem
Solving

We see problem solving (PS) as the process by
which a (single) agent chooses and pursuesob-
jectives(i.e., goals). Specifically, we model it as
consisting of the following three general phases:

• Determining Objectives: In this phase, an
agent manages objectives, deciding to which
it is committed, which will drive its current
behavior, etc.

• Determining and Instantiating Recipes for
Objectives: In this phase, an agent deter-
mines and instantiates a recipe to use to work
towards an objective. An agent may either
choose a recipe from its recipe library, or it
may choose tocreatea new recipe via plan-
ning.

• Executing Recipes and Monitoring Success:
In this phase, an agent executes a recipe and
monitors the execution to check for success.

There are several things to note about this gen-
eral description. First, we do not impose any strict
ordering on the phases above. For example, an
agent may begin executing a partially-instantiated
recipe and do more instantiation later as necessary.
An agent may also adopt and pursue an objective
in order to help it in deciding what recipe to use
for another objective.

It is also important to note that our purpose here
is not to specify a specificproblem-solving strat-
egyor prescriptive model of how an agentshould
perform problem solving. Instead, we want to
provide a general descriptive model that enables
agents with different PS strategies to still commu-
nicate.

Collaborative problem solving (CPS) follows a
similar process to single-agent problem solving.
Here two agents jointly choose and pursue objec-
tives in the same stages (listed above) as single
agents.

There are several things to note here. First, the
level of collaboration in the problem solving may
vary greatly. In some cases, for example, the col-
laboration may be primarily in the planning phase,
but one agent will actually execute the plan alone.
In other cases, the collaboration may be active in
all stages, including the planning and execution of
a joint plan, where both agents execute actions in a
coordinated fashion. Again, we want a model that
will cover the range of possible levels of collabo-
ration.

Examples of Problem-Solving Behavior In or-
der to better illustrate the problem solving behav-
ior we want to cover in our model, we give several
simple examples.

• Prototypical: Agent Q decides to go to the
park (objective). It decides to take the 10:00
bus (recipe). It goes to the bus stop, gets on
the bus and then gets off at the park (execu-
tion). It notices that it has accomplished its
objective, and stops pursuing it (monitoring).

• Interleaved Planning and Execution: Agent
Q decides to to go to the park. It decides to
take a bus (partial recipe) and starts walking
to the bus stop (partial execution) as it de-
cides which bus it should talk (continues to
instantiate recipe)....

• Replanning: Agent Q decides to go to the
park. It decides to walk (objective) and goes
outside of the house (begins execution). It
notices that it is raining and that doesn’t want
to walk to the park (monitoring). It decides
instead to take the 10:00 bus (replanning)....

• Abandoning Objective: Agent Q decides to
go to the park by taking the 10:00 bus. As
it walks outside, it notices that it is snowing

92

and decides it doesn’t want to go to the park
(abandons objective). It decides to watch TV
instead (new objective)....

2.1.1 Problem-Solving Objects

The CPS model operates on problem-solving
(PS) objects which are represented as typed fea-
ture structures. We define an upper-level ontology
of such objects, and define the CPS model around
them (which helps keep it domain independent).
The ontology can then be extended to concrete do-
mains through inheritance and instantiation of the
types defined here.

The ontology defines sixabstract PS objects,
from which all other PS objects descend:objec-
tive, recipe, constraint, resource, evaluation, and
situation. Types in the model are defines as typed
feature structures, and domain knowledge is con-
nected to the ontology by both inheritance in new
classes, as well as creating instances of ontological
objects.

2.1.2 Collaborative Problem-Solving Acts

We also define a set of actions which oper-
ate on these PS objects. Some of these include
identifying and object for use in problem
solving, adopting an object for some specific
role (e.g., committing to use a particular resource
in the plan),selecting an objective for execu-
tion.

Collaboration cannot be forced by a single-
agent, so we define on top of the CPS acts, a
model of negotiation, in which agents can nego-
tiate changes to the current CPS state (i.e., the set
of PS objects and the agents’ joint commitments
to them).

2.2 Integrating CPS into a Dialogue Model

So far, we have described a model of CPS for
any agent-agent collaboration. In order to use
CPS to model dialogue, we add an additional layer
of grounding based on Traum’s grounding model
(Traum, 1994), which gives the model coverage of
grounding phenomena in language as well.

In modeling dialogue with CPS, we use the CPS
state as part of the information state of the dia-
logue, and the meaning of each utterance (from
both parties), can be described as a move in the ne-
gotiation of change to the current CPS state (aug-
mented with grounding information). Incidentally,
this also allows us to model the intentions of indi-
vidual utterances in a dialogue.

3 The SAMMIE-05 System

The SAMMIE-05 system (Becker et al., 2006)1

is a multimodal, mixed-initiative dialogue system
for controlling an MP3 player. The system can be
used to provide typical MP3 services such as play-
back control, selection of songs/albums/playlists
for playback, creation of playlists, and so forth.

The architecture of the SAMMIE-05 system is
roughly based on that of the TRIPS system (Allen
et al., 2001), in that it separates functionality be-
tween subsystems for interpretation, behavior, and
generation. Note that this TRIPS-type architecture
pushes many tasks typically included in a dialogue
manager (e.g., reference resolution) to the inter-
pretation or generation subsystems. The interface
in SAMMIE-05 between interpretation, behavior,
and generation is, in fact, the CPS-act intentions
described in the last section. The intuition behind
the TRIPS architecture is to allow a generic be-
havioral agent to be built, which can drive the dia-
logue system’s behavior by reasoning at a collabo-
rative task level, and not a linguistic level. The dia-
logue manager we describe in the next section cor-
responds to what was called the behavioral com-
ponent in the TRIPS architecture.

4 The SAMMIE-05 Dialogue Manager

The SAMMIE-05 dialogue manager supports a
subset of the CPS model discussed above. It is
implemented as a set of production rules in PATE
(Pfleger, 2004). In this section, we report our
work towards creating a domain-independent di-
alogue manager based on our model of collabora-
tive problem solving. It is our hope that the CPS
model of dialogue sufficiently abstracts dialogue
in such a way that the same set of CPS-based up-
date rules could be used for different domains. We
do not yet claim to have a domain-independent
CPS-based dialogue manager, although we believe
we have made progress towards this end.

Because of the limits of the SAMMIE domain
(MP3 player control), many parts of the CPS
model have not been encoded into the SAMMIE-
05 dialogue manager, and consequently, the di-
alogue manager cannot be shown to be even a
“proof of concept” of the value of the CPS model

1Although the SAMMIE system was updated in 2006, in
this paper, we describe the SAMMIE system as it existed in
December 2005, which we will refer to as the SAMMIE-05
system. It is roughly equivalent to the system described in
(Becker et al., 2006).

93

itself. Our purpose here is, rather, to discuss
the progress of CPS-based dialogue management
and the insights we gained in encoding a dialogue
manager in this (relatively) simple domain.

Important parts of the CPS model which are not
supported by the SAMMIE-05 dialogue manager
include: collaborative planning and replanning,
hierarchical plans, recipe selection, goal abandon-
ment, and most evaluation. Support for these has
been left for future work. Phenomena that are cov-
ered by the system include: goal selection (albeit
not collaborative), collaborative slot-filling, plan
execution, and limited evaluation (in the form of
feasibility and error checking). As MP3 player
control consists of relatively fixed tasks, these phe-
nomena were sufficient to model the kinds of dia-
logues that SAMMIE-05 handled.

In the rest of this section, we will first describe
the dialogue manager, and how we attempt to
make it domain independent using abstraction in
the PS object hierarchy. In the process of building
this dialogue manager, we also discovered some
types of domain-specific knowledgeoutside the
CPS model proper, which are also necessary for
the dialogue manager. This is described as well,
and then we describe parts of the dialogue man-
ager which are still domain specific.

4.1 High-level Dialogue Management

As with other information state update-based sys-
tems, dialogue management in the CPS model can
be grouped into three separate processes:

Integrating Utterance Information Here the
system integrates CPS negotiation acts (aug-
mented with grounding information)—by
both user and system—as they are executed.
This is a fairly circumscribed process, and
is mostly specified in the details of the CPS
model itself. This includes such rules as
treating an negotiation action as executed
when it has been grounded, or marking
an object as committed for a certain role
when an adopt CPS act is successfully
executed. These integration rules are detailed
in (Blaylock and Allen, 2005).

Agent-based Control Once utterance content
(and its ensuing higher-level action genera-
tion) has been integrated into the dialogue
model, the system must decide what to do
and what to say next. One of the advantages

of the CPS model is that it shields such a
process from the linguistic details of the
exchange. Instead, we attempt to build such
behavior on general collaborative problem-
solving principles, regardless of what the
communication medium is. We describe this
phase in more detail below.

Package and Output Communicative Intentions
During the first two phases, communica-
tive intentions (i.e., CPS negotiation acts
augmented with grounding information)
are generated, which the system wants to
execute. In this last phase, these communica-
tive intentions are packaged and sent to the
generation subsystem for realization. When
realization is successfully accomplished, the
information state is updated using the rules
from the first phase.

The real gain in flexibility and portability from
the model comes in the second phase, where the
dialogue manager acts more like an autonomous
agent in deciding what to do and say next. The
information state encodes the agent’s commit-
ments (in terms of adopted objectives, etc.), and
the current state in the collaborative decision-
making process (e.g., which possible objects have
been discussed for a certain role). If behavior
at this level can be defined on general collabora-
tive problem-solving principles, this would make
a precomputed dialogue plan unnecessary. This is
a win for both flexibility as well as domain porta-
bility.

Most dialogue systems (e.g., GoDiS (Larsson,
2002)) use precomputeddialogue planswhich de-
fine a set of dialogue and domain actions which
need to be performed by the system during the dia-
logue. The need for such an explicit dialogue plan
not only adds cost to porting systems, it can also
affect the flexibility of the system by restricting
the ways it can interact with the user during the
dialogue.

4.2 Agent-based Control

The agent-based control phase of dialogue man-
agement can be divided into three parts. First, the
agent tries to fulfill its obligations in the current
dialogue (cf. (Traum and Allen, 1994)). This in-
cludes principles like attempting to complete any
outstanding negotiations on any outstanding CPS
acts or at least further them.

94

Second, the agent looks over its collaborative
commitments (as recorded in the CPS state) and
attempts to further them. This includes such prin-
ciples as trying to execute any actions which have
been selected for execution. In the case that an ob-
jective cannot be executed because vital informa-
tion is missing (like a value for a parameter), the
system will attempt to further the decision making
process at that slot (i.e., try to collaboratively find
a value for it).

Lastly, the agent uses its own private agenda to
determine its actions.2

In the SAMMIE-05 dialogue manager, the first
and last phases are handled entirely by rules that
refer to only the upper-level of the CPS ontology
(e.g.,objectives, resources, and so forth), and thus
are not dependent on any domain-specific infor-
mation. Rules in these phases handle the integra-
tion semantics of the CPS acts themselves.

The middle level (agent-based control) is, how-
ever, where portability can become an issue. It is
here where the dialogue manager makes decisions
about what to do and say next. In our dialogue
manager, we were able to formulate many of these
rules such that they only access information at the
upper ontology level, and do not directly access
domain-specific information. As an example, we
illustrate a few of these here.

System Identifies a Resource by RequestThe
following rule is used identify a resource in re-
sponse to a request by the user:if an identify re-
source is being negotiated, and the resource has
not been stated by the user (i.e., this is a request
that the system identify the resource), and the sys-
tem can uniquely identify such a resource given
the constraints used to describe it;then add the
found resource to the object and create a new con-
tinue negotiation of the identify resource CPS act,
and add this to the queue of responses to be gener-
ated.

As can be seen, this rule relies only on the (ab-
stract) information from the CPS model. In the
MP3 domain, this rule is used to provide user-
requested sets of information from the database

2Note that this would prototypically be beliefs, desires
and intentions, although the CPS model does not require this.
The model itself does not place requirements on single agents
and how they are modeled, as long as the agents represent the
CPS state and are able to interact using it. The agent we are
using for the SAMMIE-05 dialogue manager is not an explic-
itly represented BDI agent, but rather encodes some simple
rules about helpful behavior.

(e.g., in response to “Which Beatles albums do
you have?”). No domain-specific knowledge is en-
coded in this rule.

System Prepares an Objective to be Executed
The following rule is used when the system marks
a top-level objective to be executed next. Note that
the current version of the system does not support
hierarchical plans, thus the assumption is that this
is an atomic action. Also, the system currently
assumes that atomic action execution is instanta-
neous: if an objective is in the selected slot (i.e.,
has been selected for execution)then put the ob-
jective on a system-internal stack to signal that ex-
ecution should begin.

This is an example of a simple rule which pre-
pares anobjectivefor execution. Similar to the
rule just described, no domain-specific informa-
tion is necessary here—allobjectivesare handled
the same, no matter from which domain.

Although we were able to formulate many rules
with information available in the CPS model, we
encountered some which needed additional in-
formation from the domain—including the case
where the atomic action execution should actually
take place. We now turn our attention to these
cases.

4.3 Abstracting Additional Domain
Information

In the rules discussed above, simple knowledge
implicit in the use of abstract PS objects was suf-
ficient for encoding rules. However, there were
a few cases which required more information. In
this section, we discuss those cases for which we
were able to find a solution in order to keep the
rules domain-independent. In the next section,
we discuss rules which needed to remain domain-
specific, and the reasons for that.

Just because domain information is needed for
rules does not mean that we cannot write domain-
independent rules to handle them. What is re-
quired, however, is the specification of an abstrac-
tion for this information, which every new domain
is then required to provide.

In the MP3 domain, we have identified two gen-
eral types of this kind of knowledge. We do not
consider this to be a closed list:

Execution Knowledge One of the example
rules above showed how the decision to begin ex-
ecution of an atomic action is made. However, the

95

actualexecution requires knowledge about the do-
main which is not present in the CPS model (as
currently formulated).

In the current system, a domain encodes this
information in what we call agrounded-recipe,
which we have provisionally added as a subtype of
recipe. A grounded-recipecontains a reference to
theobjectiveit fulfills as well as a pointer to object
code (a Java class) which implements an interface
for a grounded recipe.

This allows us to write, for example, the fol-
lowing domain-independent rule for atomic action
execution in the dialogue manager:if an objec-
tivehas been chosen for execution;then look up a
matchinggrounded-recipefor theobjectiveand in-
voke it (i.e., call theexecute method of the Java
class pointed to in thegrounded-recipe(passing in
theobjectiveitself as a parameter)).

Evaluation of PS Objects A more general is-
sue which surfaced was the need to make eval-
uations of various PS objects in order to decide
the system’s acceptance/rejection of them within
a certain context. Although we believe there is a
need to specify some sort of general classification
for these, only one such evaluation came up in the
MP3 domain.

In deciding whether or not to accept the identi-
fication of a fully-specifiedobjective, the system
needed a way of checking the preconditions of the
objectivein order to detect potential errors. For ex-
ample, the SAMMIE-05 system supports the dele-
tion of a song from a playlist. Now, grounding-
level rules (not detailed here) take care of defi-
nite reference errors (e.g., mention of a playlist
that does not exist). However, if reference to both
objects (the song to be deleted and the playlist)
is properly resolved, it is still possible, for ex-
ample, that the user has asked to delete a song
from a playlist when that song is not actually on
the playlist. Thus, we needed a way of checking
this precondition (i.e., does the song exist on the
playlist). Similarly, we needed a way of check-
ing to see if the user has requested playback of an
empty playlist (i.e., a playlist that does not contain
any songs).

As a simple solution, the dialogue manager uses
an abstract interface to allow rules to check con-
ditions of any objective: if an identify objec-
tive is pending for a fully-specifiedobjective, and
CheckPreconditions fails for theobjective;
then add a reject of the identify-resource to the

output queue.

4.4 Domain-specific Rules in the System

Despite our best efforts, a few domain-specific up-
date rules are still present in the dialogue man-
ager. We describe one of these here which was
used to cover holes which the CPS model did not
adequately address. We hope to expand the model
in the future so that this rule can also be general-
ized.

In the MP3 domain, we support the creation
of (regular) playlists as well as so-called auto-
playlists (playlists created randomly given con-
straints). Both of these services correspond to
atomic actions in our domain and would be the-
oretically handled by some of the rules for execu-
tion described above. However, these are both ac-
tions which actually return a value (i.e., the newly-
created playlist). This kind of return value is not
currently supported by the CPS model. For this
reason, we support the execution of both of these
actions with special domain-specific rules.

5 Related Work

The work in (Cohen et al., 1991) motivates di-
alogue as the result of the intentions of rational
agents executing joint plans. Whereas their focus
was the formal representation of single and joint
intentions, we focus on describing and formalizing
the interaction itself. We also extend coverage to
the entire problem-solving process, including goal
selection, planning, and so forth.

Our work is also similar in spirit to work on
SharedPlans (Grosz and Sidner, 1990), which de-
scribes the necessary intentions for agents to build
and hold a joint plan, as well as a high-level sketch
of how such joint planning occurs. It defines four
operators which describe the planning process:
SelectRec, ElaborateIndividual, SelectRecGR,
andElaborateGroup. Our CPS acts describe the
joint planning process at a more fine-grained level
in order to be able to describe contributions of
individual utterances. The CPS acts could possi-
bly be seen as a further refinement of the Shared-
Plans operators. Our model also describes other
problem-solving stages, such as joint execution
and monitoring.

Collagen (Rich et al., 2001) is a framework for
building intelligent interactive systems based on
Grosz and Sidner’s tripartite model of discourse
(Grosz and Sidner, 1986). It provides middleware

96

for creating agents which act as collaborative part-
ners in executing plans using a shared artifact (e.g.,
a software application). In this sense, it is simi-
lar to the work of Cohen and Levesque described
above.

Collagen uses a subset of Sidner’s artificial ne-
gotiation language (Sidner, 1994) to model indi-
vidual contributions of utterances to the discourse
state. The language defines operators with an
outer layer of negotiation (e.g.,ProposeForAccept
(PFA) and AcceptProposal(AP)) which take ar-
guments such asSHOULD(action)andRECIPE.
Our interaction and collaborative problem-solving
acts are similar in spirit to Sidner’s negotiation
language, covering a wider range of phenom-
ena in more detail (including evaluations of goals
and recipes, solution constraining, and a layer of
grounding).

Perhaps the closest dialogue manager to ours is
the TRAINS-93 dialogue manager (Traum, 1996),
which was based on some very early notions of
collaborative problem solving. Its agentive com-
ponent, the Discourse Actor, was a reactive con-
troller which acted based on prioritized classes
of dialogue states (including discourse obliga-
tions, user intentions, grounding, and discourse
goals). Our rules were not explicitly prioritized,
and, although similar in spirit, the dialogue states
in TRAINS-93 were represented quite differently
from our CPS model.

6 Conclusion and Future Work

We have presented the SAMMIE-05 dialogue
manager, which is a first attempt at building a
dialogue manager based on collaborative prob-
lem solving. Although many parts of collabo-
rative problem solving were not handled by the
model, we discussed the extent to which the parts
covered were encoded using domain-independent
rules based on general principles of collaboration.

There is much future work still to be done. The
MP3 player control domain did not exercise large
parts of the CPS model, and thus much work re-
mains to be done to fill in the rest of the model. In
addition, we have really only scratched the surface
in terms of specifying true domain-independent
collaborative behavior, including many behaviors
which have been detailed in the literature (e.g.,
(Cohen et al., 1991)). We would like to continue
to flesh out this kind of general behavior and add
it to the dialogue management rules.

Acknowledgements

We would like to thank the SAMMIE group at
Saarland University and DFKI, especially Jan
Schehl, Ciprian Gerstenberger, Ivana Kruijff Ko-
rbayov́a and Tilman Becker, for many helpful dis-
cussions in the planning and implementation of
this work. This work was funded under the EU-
funded TALK project (No. IST-507802).

References

James Allen, George Ferguson, and Amanda Stent.
2001. An architecture for more realistic conversa-
tional systems. InProceedings of Intelligent User
Interfaces 2001 (IUI-01), pages 1–8, Santa Fe, NM,
January.

Tilman Becker, Nate Blaylock, Ciprian Gerstenberger,
Ivana Kruijff-Korbayov́a, Andreas Korthauer, Man-
fred Pinkal, Michael Pitz, Peter Poller, and Jan
Schehl. 2006. Natural and intuitive multimodal di-
alogue for in-car applications: The SAMMIE sys-
tem. In Proceedings of the ECAI Sub-Conference
on Prestigious Applications of Intelligent Systems
(PAIS 2006), Riva del Garda, Italy, August 28–
September 1.

Nate Blaylock and James Allen. 2005. A collaborative
problem-solving model of dialogue. In Laila Dy-
bkjær and Wolfgang Minker, editors,Proceedings
of the 6th SIGdial Workshop on Discourse and Dia-
logue, pages 200–211, Lisbon, September 2–3.

Nathan J. Blaylock. 2005. Towards tractable agent-
based dialogue. Technical Report 880, University
of Rochester, Department of Computer Science, Au-
gust. PhD thesis.

Dan Bohus and Alexander I. Rudnicky. 2003. Raven-
Claw: Dialog management using hierarchical task
decomposition and an expectation agenda. InPro-
ceedings of Eurospeech-2003, Geneva, Switzerland.

Philip R. Cohen, Hector J. Levesque, José H. T. Nunes,
and Sharon L. Oviatt. 1991. Task-oriented dia-
logue as a consequence of joint activity. In Hozumi
Tanaka, editor,Artificial Intelligence in the Pacific
Rim, pages 203–208. IOS Press, Amsterdam.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intention, and the structure of discourse.Com-
putational Linguistics, 12(3):175–204.

Barbara J. Grosz and Candace L. Sidner. 1990. Plans
for discourse. In P. R. Cohen, J. Morgan, and
M. Pollack, editors,Intentions in Communication,
pages 417–444. MIT Press, Cambridge, MA.

Staffan Larsson. 2002.Issue-based Dialogue Manage-
ment. Ph.D. thesis, G̈oteborg University.

97

Norbert Pfleger. 2004. Context based multimodal fu-
sion. In Sixth International Conference on Multi-
modal Interfaces (ICMI’04), State College, Pennsyl-
vania.

Charles Rich, Candace L. Sidner, and Neal Lesh. 2001.
COLLAGEN: Applying collaborative discourse the-
ory to human-computer interaction.AI Magazine,
22(4):15–25. Also available as MERL Tech Report
TR-2000-38.

Candace L. Sidner. 1994. An artificial discourse lan-
guage for collaborative negotiation. InProceedings
of the Twelfth National Conference on Artificial In-
telligence, pages 814–819, Seattle, WA. Also avail-
able as Lotus Technical Report 94-09.

David R. Traum and James F. Allen. 1994. Discourse
obligations in dialogue processing. InProceedings
of the 32nd Annual Meeting of the Association for
Computational linguistics (ACL-94), pages 1–8, Las
Cruces, New Mexico.

David R. Traum. 1994. A computational theory of
grounding in natural language conversation. Techni-
cal Report 545, University of Rochester, Department
of Computer Science, December. PhD Thesis.

David R. Traum. 1996. Conversational agency: The
TRAINS-93 dialogue manager. InProceedings of
the Twente Workshop on Language Technology 11:
Dialogue Management in Natural Language Sys-
tems, pages 1–11, June.

98

