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Abstract

This research explores how to employ
context-sensitive speech recognition in
a general way, in the Information-
State Update (ISU) approach to dialogue
management. The central idea is that
different contexts, or dialogue “Infor-
mation States”, can be associated with
different language models for speech
recognition. In this paper a “gram-
mar switching” approach is presented,
based on “active” dialogue move types.
It is then shown that this technique
leads to more robust speech recogni-
tion. An evaluation of a dialogue system
using this technique found that 87.9%
of recognised utterances were recog-
nised using a context-specific language
model, resulting in an 11.5% reduction
in the overall utterance recognition error
rate, and a 13.4% reduction in concept
error rate.

1 Context-sensitive speech recognition in
dialogue systems

The basic idea of context-sensitive speech recog-
nition is not new. Finite-state dialogue managers
typically define a recognition language model
(LM) at each state, and form-based managers of-
ten define a LM for each slot, as is commonly done
in Voice XML for example. However, this is a la-
borious and unsystematic process since a designer
must anticipate the likely range of user utterances

at each point in the dialogue. It also often cur-
tails the freedom of the speaker to say anything at
any time in the conversation. In addition, these ap-
proaches are domain- and task-specific, and thus
are not reusable. The approach presented here is
to implement a similar idea more generally and
systematically, within a richer (non-finite-state or
form-based) model of dialogue context: the Infor-
mation State Update (ISU) approach (Traum et al.,
1999). The general method presented here could
be used for a variety of applications, since it only
depends on representing the dialogue move types
of the user and system, and their dependencies,
and not on any application-specific information.

The central idea is to use an “active move
list” from dialogue Information States to define
a changing search space of language models for
speech recognition, to be used whenever the user
speaks. We assume that at any point in the dia-
logue there is a “most active move” of some dia-
logue move type (for a full description of the sys-
tem see Lemon and Gruenstein (2004)). In ISU
systems generally this is typically the last uttered
dialogue move, although there are cases, for ex-
ample where a clarification subdialogue has just
successfully closed, where another dialogue move
should be chosen. We then define, for each move
type, the name of a language model to be used for
speech recognition if that is the type of the most
active move. These LMs are defined by dialogue
move type, rather than domain-specific slot-value
types (e.g.wh-answerrather than, say,city-name).
For instance, if the most active move is ayes-no-
questionthen the appropriate language model is
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defined by a small context-free grammar covering
phrasessuch as “yes”, “that’s right”, “okay”, “neg-
ative”, “maybe”, and so on. We call this language
model[yn-answer].

In the experimental system, evaluated in the
next section, the following LMs were imple-
mented:

• [full]: generated by the whole grammar
for the application.

• [wh-answer]: generated by a subgram-
mar consisting only of “wh-answer” forms
such as “the office”, “to the school”.

• [yn-answer]: generated by a subgram-
mar consisting only of “yn-answer” forms
such as “yeah”, “that’s right”, and so on.

• [alt-answer]: generated by a subgram-
mar consisting only of “alt-answer” forms
such as “now”, “later”, “do it later”, and so
on.

• [no-answers]: generated by the whole
grammar minus all the “answer” forms.

• [no-corrections-no-wh-answers]:
generated by the whole grammar minus “an-
swer” forms and “correction” forms such as
“I meant the office”, “not the office the lab”,
and so on.

The dialogue move types were associated with dif-
ferent LMs as shown in the table of Figure 11. This
technique is a variant of “conversational games”,
also known as “dialogue games” (Carlson, 1983),
and in the context of task-oriented dialogues, “dis-
course segments” (Grosz and Sidner, 1986). Such
accounts rely on the observation that answers gen-
erally follow questions, commands are generally
acknowledged, and so on, so that dialogues can
be partially described as consisting of “adjacency
pairs” of such dialogue moves. A statistical analy-
sis of which dialogue move types typically follow

1“Root” is s special dialogue move type, used at the start
of a dialogue, and in other contexts where there are no open
questions or active commands.

each other could also be used (see e.g. Gabsdil and
Lemon (2004)2.
But what should happen in cases where the user
produces an utterance which is not in the cov-
erage of the currently active language model?
For example, the currently active LM could be
[yn-answers] but the user could produce a
command. In cases where recognition fails with
the currently active LM, there are several options:

• Reprocess the utterance using the LM related
to the next most active move3.

• Back-off to a “full” LM consisting of all the
sentences recognizable for the application,
and reprocess the utterance.

Due to the amount of time taken to perform an-
other recognition pass (roughly proportional to the
size of the LM) the second strategy is preferable,
except for cases where the next most active node
has a small associated LM. This is the technique
used in the evaluation system. With current pro-
cessor speeds, both these techniques are feasible.
In fact, it is perfectly feasible to run the recogni-
tion processes in parallel, as was done in Hockey
et al., (2003).

Figure 2 is an excerpt from a Nuance recognizer
logfile, showing these dynamic language mod-
els in action. Here, the recognizer is in a con-
text where it is using the LM[no-answers]
(for instance after just uttering a report) but can-
not recognize the user input (“maybe”) which is
an answer to an earlier system question (e.g. “is
this the right car?”). So the system backs-off
to the LM [full], and then succeeds in rec-
ognizing the answer4. Then another user utter-
ance arrives for recognition. In this context there
are no active commands that could be corrected,
and no open questions, so the recognizer uses
[no-corrections-no-answers] and suc-
cessfully recognizes the user command “zoom in
on the car”.

2Herea feature “DMBigramFrequency”, calculated from
a corpus of dialogues with the system, is used to predict
recognition performance, in combination with other features.

3This can be iterated, or performed to a certain depth of
the active move list.

4The recognizer uses a new utterance label (65552) be-
cause it treats the back-off recognition pass as a new utter-
ance.
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DM Type Language Model
command [no-answers]
confirmation [no-answers]
report [no-answers]
wh-question [wh-answer]
yn-question [yn-answer]
alt-question [alt-answer]
correction n/a
yn-answer n/a
wh-answer n/a
root [no-corrections-no-answers]

Figure 1: Language Models associated with Dialogue Move Types

started utterance 65550 with grammar .UTTERANCE-no-answers
Result #0: <rejected> (conf: 37, NL conf: 0)

started utterance 65552 with grammar .UTTERANCE-full
Result #0: maybe (conf: 81, NL conf: 81)

started utterance 65554 with grammar .UTTERANCE-no-corrections-no-answers
Result #0: zoom in on the car (conf: 50, NL conf: 47)

Figure 2: Excerpt from a Nuance Logfile, showing Context-sensitive Speech Recognition

1.1 Defining suitable Language Models

It might be thought that the process of construct-
ing the required multiple language-models is la-
borious and time-consuming. However, Gemini,
SRI’s system for developing bi-directional unifica-
tion grammars (Dowding et al., 1993), makes this
process quite simple. Gemini can be used for pars-
ing and generation, and grammars can be com-
piled to language models for the Nuance speech
recognition system. Similar systems (Bos, 2002;
Rayner et al., 2003) are also in development.

Every Gemini grammar rule can be given a fea-
ture which is the name of the subgrammar (if any)
that it belongs to. When the unification grammar
is compiled to its context-free version (Dowding
et al., 2001), these subgrammars are preserved,
and the Nuance language model compilation pro-
cess also preserves these named language mod-
els. This means that all that is required is to de-
fine the subgrammars in the top-level unification
grammar formalism. A more laborious alterna-
tive is to partition the context-free grammar (Nu-
ance GSL in this case) by hand before compila-

tion. Since the partitioning is to be done by di-
alogue move type, this is still more general and
less labour and maintenance-intensive than finite-
state or form-based approaches, which mix to-
gether task and dialogue representations.

2 Evaluation

The technique described above was implemented
in the WITAS dialogue system (Lemon et al.,
2002). Seven members of the University commu-
nity volunteered to use the system to complete a
total of 35 tasks. There were both male and fe-
male subjects, all in their twenties or thirties. The
subjects were given minimal written instruction on
how to use the system before the interaction be-
gan. They were then asked to use the system to
complete five tasks, in which they directed a sim-
ulated robot helicopter to move within a city envi-
ronment. An example task is “There are reports of
a fire at the tower. Check it out and fight the fire if
you find one. Then fly the helicopter to the ware-
house”. Each task was given immediately prior
to the start of the interaction, in language the sys-
tem could not process to prevent users from sim-
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ply reading the tasks aloud to the system. A given
taskended when the user indicated to the system
that he or she had finished, or they indicated that
they had given up on the task. The system was run
in open-microphone mode.

With the context-sensitive recognition system in
use, subjects’ speech was recorded and the system
behaviour logged for each of the five tasks. Data
was collected regarding task completion time,
steps to completion, and speech recognition er-
ror rates. All dialogues were recorded, and the
Information States logged as HTML files. The
data thus consists of 35 tasks, resulting in 362 user
turns, and 731 recognised words (as counted using
Nuance batch-recognition). Of utterances which
were recognised (at all), 87.9% were recognised
using a context-specific language model, with the
remainder being handled by backing-off to the
full language model when recognition with the
context-specific language model had failed to pro-
duce any result.

Each subject’s speech data was then batch-
recognized, without access to dialogue context in-
formation, using the full language model for the
domain (call this the “normal case”), and the re-
sulting statistics and recognition logs were com-
pared to those from the context-sensitive recog-
nition case. The Nuance batch recognition pro-
cess effectively simulates (for the purposes of
determining speech recognition performance) the
performance of the system without the context-
sensitive recognizer. We used the same recog-
nition parameters in both cases (i.e. beam width,
pruning, etc.).

The performance of the context-sensitive recog-
nition system was evaluated in two ways: overall
percentage of utterances recognized and concept
accuracy of the recognized utterances (see section
2.2).

2.1 Overall recognition performance

The percentage of utterances recognized in the
context-sensitive recognition case was 82.4%,
while it was 80.2% in the normal case. Using
a paired samples t-test this 2.2% difference be-
tween the overall utterance recognition rates in
the two samples (number of utterances recognized
per subject in the context-sensitive case compared

with the normal case) was found to be significant
(t = 2.75, df = 6, p < 0.05). The reduction in
overall recognition error rate was 11.5%.

Note that the context-sensitive system as imple-
mented here cannot actually perform more poorly
than the normal case in terms of number of rec-
ognized utterances, due to the fact that it backs-
off to the full grammar should its first recognition
attempt fail. In such cases the context-sensitive
system will be slower than the normal system, but
it is faster in the cases where the first recognition
attempt succeeds5 (since a smaller, faster LM is
used), so a further study is needed to determine
the speed/accuracy trade-offs here.

Note that the context-sensitive case can perform
more poorly in the sense of “jumping to conclu-
sions” based on a limited language model (see ex-
amples below), so we also need to determine the
accuracy of the recognized utterances in each case.
For this reason we also evaluate the concept accu-
racy of the system.

2.2 Concept accuracy

Rather than simply knowing that more utterances
are recognized using context-sensitive recogni-
tion, we wish to know whether they are recognised
correctly, and whether they lead to the correct sys-
tem actions. It might be the case that context-
sensitive recognition indeed recognises more ut-
terances, but recognises them incorrectly, possibly
harming overall system performance.

There are several important cases here:

• the user’s utterance is recognized correctly by
the context-sensitive system, but is not recog-
nized at all by the normal system (e.g. Figure
3, rows 1-4),

• the user’s utterance is recognized differently
in the normal and context-sensitive cases.
The recognition hypothesis in the context-
sensitive case is correct (or partially correct)
but incorrect for the normal case. Further-
more, the recognition hypothesis for the nor-
mal case does not give rise to the user’s in-
tended effect6 (e.g. Figure 3, rows 5-7),

5As reported above, this was 87.9 % of the recognized
utterances.

6There are cases where the normal recognizer output is
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• the user’s utterance is recognized differently
in the normal and context-sensitive cases,
and the recognized utterance in the context-
sensitive case is incorrect and does not give
rise to the user’s intended effect, whereas the
normal recognition hypothesis is correct or
partially correct, or

• both recognition hypotheses are only par-
tially correct, or

• both recognition hypotheses are completely
incorrect, or

• there are no recognition hypotheses in either
case.

An example of the first case is where
the context-sensitive system recog-
nized “fly to the tower” using the LM
[no-corrections-no-wh-answers],
but the normal system rejected the utterance. An
example of the second case is where the dialogue
system has asked “Shall I fly to the building
now or later?” (and so is subsequently using
the LM [alt-answer] for recognition) and
the user replies with “now” – which is correctly
recognized using the context-sensitive system, but
is recognized as “no” using the normal system,
which would lead to an unintended action. An
example of the third case is where the user said
“forget about the house” and this was incorrectly
recognised as “to the pond” by the context-
sensitive system (using the LM[wh-answer]),
but was correctly recognised using the full LM
under batch recognition.

We used the concept accuracy measure of Boros
et al., (1996) to compare the performance of the
context-sensitive system with the normal system,
in respect of each system’s ability to correctly
recognize user utterances. Concept accuracy is
closely correlated with word accuracy, but allows
that some word errors do not have a semantic ef-
fect (see Chotimongkol and Rudnicky (2001) for
examples). Concept accuracy for each utterance is
given by the following formula:

not absolutely correct in terms of word errors, but still leads
to the user’s intended effect (e.g. recognizing “yep” when the
user said “yes” leads to the same action in this domain). Such
word errors do not count against concept accuracy.

CA = 100
(

1− SUs + SUi + SUd

SU

)
%

–where SU is the total number of semantic units
in the reference answer (i.e. the logical form of the
utterance were it recognised correctly), andSUs,
SUi, andSUd are the number of semantic units
that must be substituted, inserted, or deleted re-
spectively, to correct the actual parser output for
the recognised utterance.

Examples of cases where the normal system (in
the first column) suffers a concept error that the the
context-sensitive system (second column) avoids
are shown in Figure 3.

The average concept accuracy in the context-
sensitive recognition case was 68.9%, while it was
64.1% in the normal case. Using a paired samples
t-test this 4.8% difference in concept accuracy be-
tween the two samples was found to be significant
(t = 2.58, df = 6, p < 0.05). The reduction in
concept error rate was 13.4%.

2.3 Related work

SRI’s CommandTalk system (Stent et al., 1999)
used a related technique which:

“used a main grammar (for full sen-
tences), and a second grammar that had
full sentences plus isolated NPs. If the
system asked a question that could be
answered with an isolated NP, then the
larger grammar would be activated. The
idea was that users were not forced to
answer the question, since they had the
complete sentence grammar available
too.” (John Dowding, personal commu-
nication).

Note that this technique was adopted to handle iso-
lated NPs occurring as wh-answers, because they
were not covered in the full CommandTalk gram-
mar. In the WITAS dialogue system, such isolated
NPs are legal utterances in the full grammar, so the
problem is not how to include them in the context
of a wh-question, but how to exclude them when
there is no active wh-question.
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Recognition Context-sensitive Context-sensitive Concept Acc %
with full LM recognition Language Model for full LM
< rejected> that’s it [yn-answer] 0
< rejected> andfollow a truck [no-answers] 0
< rejected> fly to the power station [no-corrections-no-answers]0
< rejected> whereare you [no-corrections-no-answers] 0
no now [alt-answer] 0
and the tower and stop [no-answers] 0
to the tower go to the tower [no-corrections-no-answers]33.3

Figure 3: Examples of Recognition Hypotheses occurring in the Evaluation Study

3 Conclusion

Speech recognition performance in ISU dialogue
systems can be improved by the use of context-
sensitive recognition, using a grammar-switching
approach based on dialogue move types. Both
overall recognition error rates and concept error
rates are significantly improved (11.5% and 13.4%
reductions respectively) using a general technique
which is less labour-intensive and easier to main-
tain than finite-state or form-based approaches,
which mix together domain-specific and dialogue-
general representations. A key idea is to de-
fine grammars and language models at the more
abstract level of dialogue move type (e.g.wh-
answer) rather than using application-specific slot-
filler types (e.g.destination-city).

Future work will explore more advanced tech-
niques for determining the correct LM to use in a
particular dialogue context – for example the use
of machine learning methods (Gabsdil and Lemon,
2004). Further investigation of such techniques is
planned in the TALK project7, see e.g. Lemon and
Henderson (2004).
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